Journal of Optimization Theory and Applications

, Volume 151, Issue 1, pp 175–190 | Cite as

A Modified DIviding RECTangles Algorithm for a Problem in Astrophysics

  • D. di Serafino
  • G. Liuzzi
  • V. Piccialli
  • F. Riccio
  • G. Toraldo
Article

Abstract

We present a modification of the DIRECT (DIviding RECTangles) algorithm, called DIRECT-G, to solve a box-constrained global optimization problem arising in the detection of gravitational waves emitted by coalescing binary systems of compact objects. This is a hard problem, since the objective function is highly nonlinear and expensive to evaluate, has a huge number of local extrema and unavailable derivatives. DIRECT performs a sampling of the feasible domain over a set of points that becomes dense in the limit, thus ensuring the everywhere dense convergence; however, it becomes ineffective on significant instances of the problem under consideration, because it tends to produce a uniform coverage of the feasible domain, by oversampling regions that are far from the optimal solution. DIRECT has been modified by embodying information provided by a suitable discretization of the feasible domain, based on the signal theory, which takes into account the variability of the objective function. Numerical experiments show that DIRECT-G largely outperforms DIRECT and the grid search, the latter being the reference algorithm in the astrophysics community. Furthermore, DIRECT-G is comparable with a genetic algorithm specifically developed for the problem. However, DIRECT-G inherits the convergence properties of DIRECT, whereas the genetic algorithm has no guarantee of convergence.

Keywords

Global optimization DIRECT algorithm Detection of gravitational waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Jones, D.R.: DIRECT global optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 725–735. Springer, Berlin (2009) CrossRefGoogle Scholar
  3. 3.
    Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization, 2nd edn. Kluwer Academic, Dordrecht (2000) MATHGoogle Scholar
  4. 4.
    Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Optim. Appl. 21(3), 311–323 (2002) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Carter, R.G., Gablonsky, J.M., Patrick, A., Kelley, C.T., Eslinger, O.J.: Algorithms for noisy problems in gas transmission pipeline optimization. Optim. Eng. 2(2), 139–157 (2001) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Cox, S.E., Haftka, R.T., Baker, C.A., Grossman, B., Mason, W.H., Watson, L.T.: A comparison of global optimization methods for the design of a high-speed civil transport. J. Glob. Optim. 21(4), 415–433 (2001) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    He, J., Watson, L.T., Ramakrishnan, N., Shaffer, C.A., Verstak, A., Jiang, J., Bae, K., Tranter, W.H.: Dynamic data structures for a direct search algorithm. Comput. Optim. Appl. 23(1), 5–25 (2002) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. Journal of Global Optimization (2010) Google Scholar
  10. 10.
    Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Optim. Appl. 45(2), 253–375 (2010) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Panning, T.D., Watson, L.T., Allen, N.A., Chen, K.C., Shaffer, C.A., Tyson, J.J.: Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle. J. Glob. Optim. 40, 719–738 (2008) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Thorne, K.S.: Gravitational radiation. In: Hawking, S.W., Israel, W. (eds.) 300 Years of Gravitation, pp. 330–458. Cambridge University Press, Cambridge (1987) Google Scholar
  13. 13.
    Babak, S., Balasubramanian, R., Churches, D., Cokelaer, T., Sathyaprakash, B.S.: A template bank to search for gravitational waves from inspiralling compact binaries I: physical models. Class. Quantum Gravity 23, 5477–5504 (2006) MATHCrossRefGoogle Scholar
  14. 14.
    di Serafino, D., Gomez, S., Milano, L., Riccio, F., Toraldo, G.: A genetic algorithm for a global optimization problem arising in the detection of gravitational waves. J. Glob. Optim. 48(1), 41–55 (2010) MATHCrossRefGoogle Scholar
  15. 15.
    di Serafino, D., Riccio, F.: On the application of multiple-deme parallel genetic algorithms in astrophysics. In: Proceedings of the 18th Euromicro International Conference on Parallel Distributed and Network-Based Processing, pp. 231–237 (2010) Google Scholar
  16. 16.
    Milano, L., Barone, F., Milano, M.: Time domain amplitude and frequency detection of gravitational waves from coalescing binaries. Phys. Rev. D 55(8), 4537–4554 (1997) CrossRefGoogle Scholar
  17. 17.
    Mohanty, S.D.: Hierarchical search strategy for the detection of gravitational waves from coalescing binaries: extension to post-Newtonian waveforms. Phys. Rev. D 57(2), 630–658 (1998) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mohanty, S.D., Dhurandhar, S.V.: Hierarchical search strategy for the detection of gravitational waves from coalescing binaries. Phys. Rev. D 54(12), 7108–7128 (1996) CrossRefGoogle Scholar
  19. 19.
    Owen, B.J.: Search templates for gravitational waves from inspiraling binaries: choice of template spacing. Phys. Rev. D 53(12), 6749–6761 (1996) CrossRefGoogle Scholar
  20. 20.
    Blanchet, L., Rlyer, B., Wiseman, A.G.: Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order. Class. Quantum Gravity 13, 575–584 (1996) MATHCrossRefGoogle Scholar
  21. 21.
    Prix, R.: Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces. Class. Quantum Gravity 24, S481–S490 (2007) MATHCrossRefGoogle Scholar
  22. 22.
    Rasio, A.R., Shapiro, S.L.: Coalescing binary neutron stars. Class. Quantum Gravity 16(6), R1–R29 (1999) CrossRefGoogle Scholar
  23. 23.
    Allen, B., et al.: LAL Software Documentation. Revision 1.44, 2005 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • D. di Serafino
    • 1
  • G. Liuzzi
    • 2
  • V. Piccialli
    • 3
  • F. Riccio
    • 1
  • G. Toraldo
    • 4
  1. 1.Dipartimento di MatematicaSeconda Università degli Studi di NapoliCasertaItaly
  2. 2.Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”CNRRomeItaly
  3. 3.Dipartimento di Informatica, Sistemi e ProduzioneUniversità degli Studi di Roma “Tor Vergata”RomeItaly
  4. 4.Dipartimento di Ingegneria Agraria e Agronomia del TerritorioUniversità degli Studi di Napoli “Federico II”Portici (NA)Italy

Personalised recommendations