Journal of Optimization Theory and Applications

, Volume 150, Issue 2, pp 233–250 | Cite as

Optimal Synthesis of the Asymmetric Sinistral/Dextral Markov–Dubins Problem

Article

Abstract

We consider a variation of the classical Markov–Dubins problem dealing with curvature-constrained, shortest paths in the plane with prescribed initial and terminal positions and tangents, when the lower and upper bounds of the curvature of the path are not necessarily equal. The motivation for this problem stems from vehicle navigation applications, when a vehicle may be biased in taking turns at a particular direction due to hardware failures or environmental conditions. After formulating the shortest path problem as a minimum-time problem, a family of extremals, which is sufficient for optimality, is characterized, and subsequently the complete analytic solution of the optimal synthesis problem is presented. In addition, the synthesis problem, when the terminal tangent is free, is also considered, leading to the characterization of the set of points that can be reached in the plane by curves satisfying asymmetric curvature constraints.

Keywords

Markov–Dubins problem Curvature constrained paths Asymmetric steering constraints Non-holonomic systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Sussmann, H.J.: The Markov–Dubins problem with angular acceleration control. In: Proceedings of 36th IEEE Conference on Decision and Control, San Diego, CA, December, pp. 2639–2643 (1997) CrossRefGoogle Scholar
  3. 3.
    Patsko, V.S., Turova, V.L.: Numerical study of the “homicidal chauffeur” differential game with the reinforced pursuer. Game Theory Appl. 12(8), 123–152 (2007) MathSciNetGoogle Scholar
  4. 4.
    Isaacs, R.: Games of pursuit. RAND Report P-257. RAND Corporation, Santa Monica, CA (1951) Google Scholar
  5. 5.
    Isaacs, R.: Differential Games. A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. Dover, New York (1999) Google Scholar
  6. 6.
    Cockayne, E.J., Hall, W.C.: Plane motion of a particle subject to curvature constraints. SIAM J. Control 13(1), 197–220 (1975) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Reeds, A.J., Shepp, R.A.: Optimal paths for a car that goes both forward and backwards. Pac. J. Math. 145(2), 367–393 (1990) MathSciNetGoogle Scholar
  8. 8.
    Sussmann, H.J., Tang, G.: Shortest paths for the Reeds–Shepp car: A worked out example of the use of geometric techniques in nonlinear optimal control. Research Note SYCON-91-10, Rutgers University, New Brunswick, NJ (1991) Google Scholar
  9. 9.
    Boissonnat, J.D., Cérézo, A., Leblond, J.: Shortest paths of bounded curvature in the plane. J. Intell. Robot. Syst. 11(1–2), 5–20 (1994) MATHCrossRefGoogle Scholar
  10. 10.
    Boissonnat, J.D., Bui, X.-N.: Accessibility region for a car that only moves forward along optimal paths. Research Note 2181, Institut National de Recherche en Informatique et en Automatique, Sophia-Antipolis, France (1994) Google Scholar
  11. 11.
    Sussmann, H.J.: Shortest 3-dimensional path with a prescribed curvature bound. In: Proceedings of 34th IEEE Conference on Decision and Control, New Orleans, LA, December, pp. 3306–3312 (1995) Google Scholar
  12. 12.
    Vendittelli, M., Laumond, J.-P., Nissoux, C.: Obstacle distance for car-like robots. IEEE Trans. Robot. Autom. 15(4), 678–691 (1999) CrossRefGoogle Scholar
  13. 13.
    Chitour, Y., Sigalotti, M.: Dubins’ problem on surfaces. I Nonnegative curvature. J. Geom. Anal. 15(4), 565–587 (2005) MATHMathSciNetGoogle Scholar
  14. 14.
    Sigalotti, M., Chitour, Y.: On the controllability of the Dubins’ problem for surfaces. II Negative curvature. SIAM J. Control Optim. 45(2), 457–482 (2006) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Chitsaz, H., LaValle, S.M.: Time-optimal paths for a Dubins airplane. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, 12–14 December, pp. 2379–2384 (2007) CrossRefGoogle Scholar
  16. 16.
    Sanfelice, R.G., Frazzoli, E.: On the optimality of Dubins paths across heterogeneous terrain. In: Proceedings of the 11th Intern. Workshop on Hybrid Systems, St. Louis, MO, April 22–24, pp. 457–470 (2008) Google Scholar
  17. 17.
    Giordano, P.L., Vendittelli, M.: Shortest paths to obstacles for a polygonal Dubins car. IEEE Trans. Robot. 25(5), 1184–1191 (2009) CrossRefGoogle Scholar
  18. 18.
    Savla, K., Frazzoli, E., Bullo, F.: Traveling salesperson problems for the Dubins’ vehicle. IEEE Trans. Autom. Control 53(6), 1378–1391 (2008) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Bakolas, E., Tsiotras, P.: Time-optimal synthesis for the Zermelo–Markov–Dubins problem: The constant wind case. In: Proceedings of the 2010 American Control Conference, Baltimore, MD, June 10–12, pp. 6163–6163 (2010) Google Scholar
  20. 20.
    Ducard, G., Kulling, K., Gering, H.: Evaluation of reduction in the performance of a small UAV after an aileron failure for an adaptive guidance system. In: Proceedings of the 2007 American Control Conference, New York City, NY, July 11–13, pp. 1793–1798 (2007) CrossRefGoogle Scholar
  21. 21.
    Merriam Webster Dictionary. http://www.merriam-webster.com/dictionary/
  22. 22.
    Bakolas, E., Tsiotras, P.: The asymmetric sinistral/dextral Markov–Dubins problem. In: Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China, December 15–18, pp. 5649–5654 (2009) Google Scholar
  23. 23.
    Bui, X.-N., Boissonnat, J.D.: The shortest paths synthesis for nonholonomic robots moving forwards. Research Note 2153, Institut National de Recherche en Informatique et en Automatique, Sophia-Antipolis, France (1993) Google Scholar
  24. 24.
    Bui, X.-N., Souéres, P., Boissonnat, J.D., Laumond, J.-P.: Shortest path synthesis for Dubins nonholonomic robot. In: Proceedings of the 11th IEEE Intern. Conf. on Robotics and Automation, San Diego, California, May (1994) Google Scholar
  25. 25.
    Cesari, M.: Optimization—Theory and Applications. Problems with Ordinary Differential Equations. Springer, New York (1983) MATHGoogle Scholar
  26. 26.
    Thomaschewski, B.: Dubins problem for the free terminal direction. Preprint (2001), pp. 1–14 Google Scholar
  27. 27.
    Souéres, P., Fourquet, J.-Y., Laumond, J.-P.: Set of reachable positions for a car. IEEE Trans. Autom. Control 39(8), 1626–1630 (1994) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Aerospace EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations