On Second-Order Optimality Conditions for Vector Optimization

  • María C. Maciel
  • Sandra A. Santos
  • Graciela N. Sottosanto


In this article, two second-order constraint qualifications for the vector optimization problem are introduced, that come from first-order constraint qualifications, originally devised for the scalar case. The first is based on the classical feasible arc constraint qualification, proposed by Kuhn and Tucker (Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 481–492, University of California Press, California, 1951) together with a slight modification of McCormick’s second-order constraint qualification. The second—the constant rank constraint qualification—was introduced by Janin (Math. Program. Stud. 21:110–126, 1984). They are used to establish two second-order necessary conditions for the vector optimization problem, with general nonlinear constraints, without any convexity assumption.


Nonlinear vector optimization Pareto points Weak Pareto points Constraint qualifications Optimality conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 481–492. University of California Press, California (1951) Google Scholar
  2. 2.
    Janin, R.: Directional derivative of the marginal function in nonlinear programming. Math. Program. Stud. 21, 110–126 (1984) MATHMathSciNetGoogle Scholar
  3. 3.
    Wang, S.: Second order necessary and sufficient conditions in multiobjective programming. Numer. Funct. Anal. Optim. 12, 237–252 (1991) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    McCormick, G.P.: Second order conditions for constrained minima. SIAM J. Appl. Math. 15(3), 641–652 (1967) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Aghezzaf, B., Hachimi, M.: Second-order optimality conditions in multiobjective optimization problems. J. Optim. Theory Appl. 102, 37–50 (1999) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Hachimi, M., Aghezzaf, B.: New results on second-order optimality conditions in vector optimization problems. J. Optim. Theory Appl. 135, 117–133 (2007) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bigi, G., Castellani, M.: Second order optimality conditions for differentiable multiobjective problems. RAIRO Oper. Res. 34, 411–426 (2000) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Ben-Tal, A.: Second-order and related extremality conditions in nonlinear programming. J. Optim. Theory Appl. 31, 143–165 (1980) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Jiménez, B., Novo, V.: Second order necessary conditions in set constrained differentiable vector optimization. Math. Methods Oper. Res. 58, 299–317 (2003) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Jiménez, B., Novo, V.: Optimality conditions in directionally differentiable Pareto problems with a set constrained via tangent cones. Numer. Funct. Anal. Optim. 24, 557–574 (2003) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Moldovan, A., Pellegrini, L.: On regularity for Constrained Extremum Problem. Part 1: Sufficient optimality conditions. J. Optim. Theory Appl. 142, 147–163 (2009) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Moldovan, A., Pellegrini, L.: On regularity for Constrained Extremum Problem. Part 2: Necessary optimality conditions. J. Optim. Theory Appl. 142, 165–183 (2009) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Giannessi, F.: Constrained Optimization and Image Space Analysis, Separation of Sets and Optimality, vol. 1. Springer, New York (2005) Google Scholar
  14. 14.
    Andreani, R., Martínez, J.M., Schuverdt, M.L.: On second order optimality conditions for nonlinear programming. Optimization 56, 529–542 (2007) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Andreani, R., Echagüe, C.E., Schuverdt, M.L.: Constant-rank condition and second-order constraint qualification. J. Optim. Theory Appl. 146, 255–266 (2010) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Lu, S.: Implications of the constant rank constraint qualification. Math. Program. (2009). doi: 10.1007/s10107-009-0288-3 Google Scholar
  17. 17.
    Izmailov, A., Solodov, M.: Condições de Otimalidade, Elementos de Análise Convexa e de Dualidade. Otimização, vol. 1. IMPA, Rio de Janeiro (2005) Google Scholar
  18. 18.
    Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999) MATHGoogle Scholar
  19. 19.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 2nd edn. Wiley, New York (1993) MATHGoogle Scholar
  20. 20.
    Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, New York (1991) Google Scholar
  21. 21.
    Da Cunha, N.O., Polak, E.: Constraint minimization under vector-value criteria in finite dimensional spaces. J. Math. Anal. Appl. 19, 103–124 (1967) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Bigi, G.: Optimality and Lagrangian regularity in vector optimization. Ph.D. thesis, Dipartimento di Matematica, Università di Pisa, Italy (1999). http://www.di.unipi.it/bigig/mat/abstracts/thesis.html
  23. 23.
    Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. SIAM, Philadelphia (1990) MATHGoogle Scholar
  24. 24.
    Mangasarian, O.L.: Nonlinear Programming. SIAM, Philadelphia (1994) MATHGoogle Scholar
  25. 25.
    Bigi, G., Pappalardo, M.: Regularity conditions in vector optimization. J. Optim. Theory Appl. 102, 81–96 (1999) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Maciel, M.C., Santos, S.A., Sottosanto, G.N.: Regularity conditions in differentiable vector optimization revisited. J. Optim. Theory Appl. 142, 385–398 (2009) CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Bazaraa, M.S., Shetty, C.M.: Foundations of Optimization. Lecture Notes in Econom. and Math. Systems, vol. 122. Springer, Berlin (1976) MATHGoogle Scholar
  28. 28.
    Anitescu, M.: Degenerate nonlinear programming with a quadratic growth condition. SIAM J. Optim. 10, 1116–1135 (2000) CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Arutyunov, A.V.: Perturbations of extremum problems with constraints and necessary optimality conditions. J. Sov. Math. 54, 1342–1400 (1991) CrossRefMATHGoogle Scholar
  30. 30.
    Levitin, E.S., Milyutin, A.A., Osmolovskii, N.P.: Higher order conditions for a local minimum in problems with constraints. Russ. Math. Surv. 33, 97–168 (1978) CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Baccari, A.: On the classical necessary second-order optimality conditions. J. Optim. Theory Appl. 123, 213–221 (2004) CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Baccari, A., Trad, A.: On the classical necessary second-order optimality conditions in the presence of equality and inequality constraints. SIAM J. Optim. 15, 394–408 (2004) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • María C. Maciel
    • 1
  • Sandra A. Santos
    • 2
  • Graciela N. Sottosanto
    • 3
  1. 1.Department of MathematicsSouthern National UniversityBahía BlancaArgentina
  2. 2.Department of Applied MathematicsState University of CampinasCampinasBrazil
  3. 3.Department of MathematicsComahue National UniversityNeuquénArgentina

Personalised recommendations