Strong Convergence of an Iterative Scheme by a New Type of Projection Method for a Family of Quasinonexpansive Mappings

Article

Abstract

We deal with a common fixed point problem for a family of quasinonexpansive mappings defined on a Hilbert space with a certain closedness assumption and obtain strongly convergent iterative sequences to a solution to this problem. We propose a new type of iterative scheme for this problem. A feature of this scheme is that we do not use any projections, which in general creates some difficulties in practical calculation of the iterative sequence. We also prove a strong convergence theorem by the shrinking projection method for a family of such mappings. These results can be applied to common zero point problems for families of monotone operators.

Keywords

Quasinonexpansive mapping Nonexpansive mapping Monotone operator Inverse-strongly monotone operator Fixed point Metric projection Shrinking projection method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Opér. 4, 154–158 (1970) MathSciNetGoogle Scholar
  2. 2.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Brézis, H., Lions, P.-L.: Produits infinis de résolvantes. Israel J. Math. 29, 329–345 (1978) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program. 87, 189–202 (2000) MATHMathSciNetGoogle Scholar
  6. 6.
    Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13, 938–945 (2002) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kohsaka, F., Takahashi, W.: Strong convergence of an iterative sequence for maximal monotone operators in a Banach space. Abstr. Appl. Anal., 239–249 (2004) Google Scholar
  8. 8.
    Kimura, Y., Nakajo, K., Takahashi, W.: Strongly convergent iterative schemes for a sequence of nonlinear mappings. J. Nonlinear Convex Anal. 9, 407–416 (2008) MATHMathSciNetGoogle Scholar
  9. 9.
    Tricomi, F.G.: Lezioni di Analisi Matematica, Parte I Padova, Casa Editrice CEDAM (1956), p. 325 Google Scholar
  10. 10.
    Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953) CrossRefMATHGoogle Scholar
  11. 11.
    Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967) CrossRefMATHGoogle Scholar
  12. 12.
    Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. (Basel) 58, 486–491 (1992) MATHMathSciNetGoogle Scholar
  15. 15.
    Reich, S.: Approximating fixed points of nonexpansive mappings. Panamer. Math. J. 4, 23–28 (1994) MATHMathSciNetGoogle Scholar
  16. 16.
    Shioji, N., Takahashi, W.: Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces. Proc. Am. Math. Soc. 125, 3641–3645 (1997) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Takahashi, W., Kim, G.-E.: Approximating fixed points of nonexpansive mappings in Banach spaces. Math. Jpn. 48, 1–9 (1998) MATHMathSciNetGoogle Scholar
  18. 18.
    Nakajo, K., Takahashi, W.: Approximation of a zero of maximal monotone operators in Hilbert spaces. In: Takahashi, W., Tanaka, T. (eds.) Nonlinear Analysis and Convex Analysis, pp. 303–314. Yokohama Publishers, Yokohama (2003) Google Scholar
  19. 19.
    Takahashi, W., Takeuchi, Y., Kubota, R.: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 341, 276–286 (2008) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Plubtieng, S., Ungchittrakool, K.: Hybrid iterative methods for convex feasibility problems and fixed point problems of relatively nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 19, 583082 (2008) MathSciNetGoogle Scholar
  21. 21.
    Takahashi, W., Zembayashi, K.: Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings. Fixed Point Theory Appl. 11, 528476 (2008) MathSciNetGoogle Scholar
  22. 22.
    Qin, X., Cho, Y.J., Kang, S.M.: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. 225, 20–30 (2009) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Wattanawitoon, K., Kumam, P.: Strong convergence theorems by a new hybrid projection algorithm for fixed point problems and equilibrium problems of two relatively quasi-nonexpansive mappings. Nonlinear Anal. Hybrid Syst. 3, 11–20 (2009) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Wattanawitoon, K., Kumam, P.: Corrigendum to: “Strong convergence theorems by a new hybrid projection algorithm for fixed point problems and equilibrium problems of two relatively quasi-nonexpansive mappings” [Nonlinear Anal. Hybrid Syst. 3, 11–20 (2009) [MR2487980]]. Nonlinear Anal. Hybrid Syst. 3, 176 (2009) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Kimura, Y., Takahashi, W.: On a hybrid method for a family of relatively nonexpansive mappings in a Banach space. J. Math. Anal. Appl. 357, 356–363 (2009) CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Kimura, Y.: Shrinking projection methods and common zero point problems for a finite family of maximal monotone operators. In: Akashi, S., Kimura, Y., Tanaka, T. (eds.) Nonlinear Analysis and Convex Analysis, pp. 125–133. Yokohama Publishers, Yokohama (2010) Google Scholar
  27. 27.
    Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009) MATHGoogle Scholar
  28. 28.
    Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969) CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer Academic, Dordrecht (1993) MATHGoogle Scholar
  30. 30.
    Bruck, R.E., Jr.: Nonexpansive projections on subsets of Banach spaces. Pacific J. Math. 47, 341–355 (1973) MATHMathSciNetGoogle Scholar
  31. 31.
    Tsukada, M.: Convergence of best approximations in a smooth Banach space. J. Approx. Theory 40, 301–309 (1984) CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007) CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Itoh, S., Takahashi, W.: The common fixed point theory of single valued mappings and multivalued mappings. Pacific J. Math. 79, 493–508 (1978) MathSciNetGoogle Scholar
  34. 34.
    Takahashi, W., Yao, J.-C.: Strong convergence theorems by hybrid methods for countable families of nonlinear operators in Banach spaces (to appear) Google Scholar
  35. 35.
    Kohsaka, F., Takahashi, W.: Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Arch. Math. (Basel) 91, 166–177 (2008) MATHMathSciNetGoogle Scholar
  36. 36.
    Kohsaka, F., Takahashi, W.: Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces. SIAM J. Optim. 19, 824–835 (2008) CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Kimura, Y., Takahashi, W., Toyoda, M.: Convergence to common fixed points of a finite family of nonexpansive mappings. Arch. Math. (Basel) 84, 350–363 (2005) MATHMathSciNetGoogle Scholar
  38. 38.
    Xu, H.-K.: Another control condition in an iterative method for nonexpansive mappings. Bull. Aust. Math. Soc. 65, 109–113 (2002) CrossRefMATHGoogle Scholar
  39. 39.
    Barbu, V., Precupanu, T.: Convexity and optimization in Banach spaces. In: Mathematics and Its Applications. East European Series, vol. 10. Reidel, Dordrecht (1986). Romanian ed. Google Scholar
  40. 40.
    Goebel, K., Kirk, W.A.: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 35, 171–174 (1972) CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Takahashi, W.: Convex Analysis and Approximation of Fixed Points. Yokohama Publishers, Yokohama (2000) Google Scholar
  42. 42.
    Takahashi, W.: Nonlinear Functional Analysis: Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000) MATHGoogle Scholar
  43. 43.
    Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematical and Computing SciencesTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of Applied MathematicsNational Sun Yat-sen UniversityKaohsiungTaiwan

Personalised recommendations