Global Robust Passivity Analysis for Stochastic Interval Neural Networks with Interval Time-Varying Delays and Markovian Jumping Parameters

Article

Abstract

In this paper, the problem of passivity analysis is investigated for stochastic interval neural networks with interval time-varying delays and Markovian jumping parameters. By constructing a proper Lyapunov-Krasovskii functional, utilizing the free-weighting matrix method and some stochastic analysis techniques, we deduce new delay-dependent sufficient conditions, that ensure the passivity of the proposed model. These sufficient conditions are computationally efficient and they can be solved numerically by linear matrix inequality (LMI) Toolbox in Matlab. Finally, numerical examples are given to verify the effectiveness and the applicability of the proposed results.

Keywords

Interval time-varying delays Linear matrix inequality (LMI) Lyapunov method Passivity Stochastic interval neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, New York (1998) Google Scholar
  2. 2.
    Chen, W.-H., Zheng, W.X.: Improved delay-dependent asymptotic stability criteria for delayed neural networks. IEEE Trans. Neural Netw. 19, 2154–2161 (2008) CrossRefGoogle Scholar
  3. 3.
    Peng, G., Huang, L.: Exponential stability of hybrid stochastic recurrent neural networks with time-varying delays. Nonlinear Anal. Hybrid Syst. 2, 1198–1204 (2008) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Pardalos, P.M., Yatsenko, V.A. (eds.): Optimization and Control of Bilinear Systems Theory, Algorithms, and Applications Series. Springer Optimization and Its Applications, vol. 11. Springer, Berlin (2008) Google Scholar
  5. 5.
    Hager, W., Pardalos, P.M. (eds.): Optimal Control: Theory, Algorithms, and Applications. Kluwer Academic, Dordrecht (1998) MATHGoogle Scholar
  6. 6.
    Pardalos, P.M., Tseveendorj, I., Enkhbat, R. (eds.): Optimization and Optimal Control. World Scientific, Singapore (2003) MATHGoogle Scholar
  7. 7.
    Chinchuluun, A., Pardalos, P.M., Enkhbat, R., Tseveendorj, I. (eds.): Optimization and Optimal Control Theory and Applications Series. Springer Optimization and Its Applications, vol. 39. Springer, Berlin (2010) Google Scholar
  8. 8.
    Anderson, B.D.O., Vongpanitlerd, S.: Network Analysis and Synthesis—A Modern Systems Theory Approach. Prentice Hall, Englewood Cliffs (1973) Google Scholar
  9. 9.
    Hilla, D.J., Moylan, P.J.: Stability results for nonlinear feedback systems. Automatica 13, 377–382 (1977) CrossRefGoogle Scholar
  10. 10.
    Lin, W., Byrnes, C.I.: Passivity and absolute stabilization of a class of discrete-time nonlinear systems. Automatica 31, 263–267 (1995) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Chua, L.O.: Passivity and complexity. IEEE Trans. Circuits Syst. I 46, 71–82 (1999) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Xie, L.H., Fu, M.Y., Li, H.Z.: Passivity analysis and passification for uncertain signal processing systems. IEEE Trans. Signal Process. 46, 2394–2403 (1998) CrossRefGoogle Scholar
  13. 13.
    Wu, C.W.: Synchronization in arrays of coupled nonlinear systems: passivity, circle criterion and observer design. IEEE Trans. Circuits Syst. I 48, 1257–1261 (2001) MATHCrossRefGoogle Scholar
  14. 14.
    Calcev, G., Gorez, R., Neyer, M.D.: Passivity approach to fuzzy control systems. Automatica 34, 339–344 (1998) MATHCrossRefGoogle Scholar
  15. 15.
    Mahmoud, M.S., Ismail, A.: Passivity and passification of time-delay systems. J. Math. Anal. Appl. 292, 247–258 (2004) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Li, C.G., Zhang, H.B., Liao, X.F.: Passivity and passification of fuzzy systems with time delays. Comput. Math. Appl. 52, 1067–1078 (2006) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Liu, X.W.: Passivity analysis of uncertain fuzzy delayed systems. Chaos Solitons Fractals 34, 833–838 (2007) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Li, C.G., Liao, X.F.: Passivity analysis of neural networks with time delay. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 52, 471–475 (2005) CrossRefGoogle Scholar
  19. 19.
    Lou, X.Y., Cui, B.T.: Passivity analysis of integro-differential neural networks with time-varying delays. Neurocomputing 70, 1071–1078 (2007) CrossRefGoogle Scholar
  20. 20.
    Park, J.H.: Further results on passivity analysis of delayed cellular neural networks. Chaos Solitons Fractals 34, 1546–1551 (2007) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Lu, C.-Y., Tsai, H.-H., Su, T.-J., Tsai, J.S.-H., Liao, C.-W.: A delay-dependent approach to passivity analysis for uncertain neural networks with time-varying delay. Neural Process. Lett. 27, 237–246 (2008) CrossRefGoogle Scholar
  22. 22.
    Song, Q., Wang, Z.: New results on passivity analysis of uncertain neural networks with time-varying delays. Int. J. Comput. Math. 87, 668–678 (2010) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Xu, S., Zheng, W.X., Zou, Y.: Passivity analysis of neural networks with time-varying delays. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 56, 325–329 (2009) CrossRefGoogle Scholar
  24. 24.
    Chen, B., Li, H., Lin, C., Zhou, Q.: Passivity analysis for uncertain neural networks with discrete and distributed time-varying delays. Phys. Lett. A 373, 1242–1248 (2009) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chen, Y., Li, W., Bi, W.: Improved results on passivity analysis of uncertain neural networks with time-varying discrete and distributed delays. Neural Process. Lett. 30, 155–169 (2009) CrossRefGoogle Scholar
  26. 26.
    Zhang, Z., Mou, S., Lam, J., Gao, H.: New passivity criteria for neural networks with time-varying delay. Neural Netw. 22, 864–868 (2009) CrossRefGoogle Scholar
  27. 27.
    Song, Q., Liang, J., Wang, Z.: Passivity analysis of discrete-time stochastic neural networks with time-varying delays. Neurocomputing 72, 1782–1788 (2009) CrossRefGoogle Scholar
  28. 28.
    Liang, J., Song, Q.: Global Passivity of Stochastic Neural Networks with Time-Varying Delays. Springer, Berlin Heidelberg (2009) Google Scholar
  29. 29.
    Li, C.D., Liao, X.F., Zhang, R.: Global robust asymptotical stability of multi-delayed interval neural networks: an LMI approach. Phys. Lett. A 328, 452–462 (2004) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Shu, Z., Lam, J.: Global exponential estimates of stochastic interval neural networks with discrete and distributed delays. Neurocomputing 71, 2950–2963 (2008) CrossRefGoogle Scholar
  31. 31.
    Su, W., Chen, Y.: Global robust exponential stability analysis for stochastic interval neural networks with time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 14, 2293–2300 (2009) MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tino, P., Cernansky, M., Benuskova, L.: Markovian architectural bias of recurrent neural networks. IEEE Trans. Neural Netw. 15, 6–15 (2004) CrossRefGoogle Scholar
  33. 33.
    Liu, Y., Wang, Z., Liu, X.: An LMI approach to stability analysis of stochastic high-order Markovian jumping neural networks with mixed time delays. Nonlinear Anal. Hybrid Syst. 2, 110–120 (2008) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Balasubramaniam, P., Rakkiyappan, R.: Delay-dependent robust stability analysis for Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays. Nonlinear Anal. Hybrid Syst. 3, 207–214 (2009) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Rakkiyappan, R., Balasubramaniam, P.: Dynamic analysis of Markovian jumping impulsive stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays. Nonlinear Anal. Hybrid Syst. 3, 408–417 (2009) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsGandhigram Rural Institute-Deemed UniversityGandhigramIndia

Personalised recommendations