Advertisement

Max-Min Problems on the Ranks and Inertias of the Matrix Expressions ABXC±(BXC) with Applications

  • Yonghui Liu
  • Yongge TianEmail author
Article

Abstract

We introduce a simultaneous decomposition for a matrix triplet (A,B,C ), where AA and (⋅) denotes the conjugate transpose of a matrix, and use the simultaneous decomposition to solve some conjectures on the maximal and minimal values of the ranks of the matrix expressions ABXC±(BXC) with respect to a variable matrix X. In addition, we give some explicit formulas for the maximal and minimal values of the inertia of the matrix expression ABXC−(BXC) with respect to X. As applications, we derive the extremal ranks and inertias of the matrix expression DCXC subject to Hermitian solutions of a consistent matrix equation AXA =B, as well as the extremal ranks and inertias of the Hermitian Schur complement DB A B with respect to a Hermitian generalized inverse A of A. Various consequences of these extremal ranks and inertias are also presented in the paper.

Keywords

Hermitian matrix Rank Inertia Generalized inverse Schur complement Inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003) zbMATHGoogle Scholar
  2. 2.
    Bernstein, D.S.: Matrix Mathematics: Theory, Facts and Formulas, 2nd edn. Princeton University Press, Princeton (2009) zbMATHGoogle Scholar
  3. 3.
    Hogben, L.: Handbook of Linear Algebra. Chapman & Hall/CRC, New York (2007) zbMATHGoogle Scholar
  4. 4.
    Barrett, W., Hall, H.T., Loewy, R.: The inverse inertia problem for graphs: cut vertices, trees, and a counterexample. Linear Algebra Appl. 431, 1147–1191 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Tian, Y., Liu, Y.: Extremal ranks of some symmetric matrix expressions with applications. SIAM J. Matrix Anal. Appl. 28, 890–905 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Liu, Y., Tian, Y.: More on extremal ranks of the matrix expressions ABX±X B with statistical applications. Numer. Linear Algebra Appl. 15, 307–325 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Liu, Y., Tian, Y.: Extremal ranks of submatrices in an Hermitian solution to the matrix equation AXA =B with applications. J. Appl. Math. Comput. 32, 289–301 (2010) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Liu, Y., Tian, Y.: A simultaneous decomposition of a matrix triplet with applications. Numer. Linear Algebra Appl. doi: 10.1002/nla.701
  9. 9.
    Liu, Y., Tian, Y., Takane, Y.: Ranks of Hermitian and skew-Hermitian solutions to the matrix equation AXA =B. Linear Algebra Appl. 431, 2359–2372 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tian, Y.: Completing block matrices with maximal and minimal ranks. Linear Algebra Appl. 321, 327–345 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Tian, Y.: Rank equalities related to outer inverses of matrices and applications. Linear Multilinear Algebra 49, 269–288 (2002) CrossRefGoogle Scholar
  12. 12.
    Tian, Y.: The minimum rank of a 3×3 partial block matrix. Linear Multilinear Algebra 50, 125–131 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Tian, Y.: Upper and lower bounds for ranks of matrix expressions using generalized inverses. Linear Algebra Appl. 355, 187–214 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Tian, Y.: The maximal and minimal ranks of some expressions of generalized inverses of matrices. Southeast Asian Bull. Math. 25, 745–755 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tian, Y.: Ranks of solutions of the matrix equation AXB=C. Linear Multilinear Algebra 51, 111–125 (2003) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Tian, Y.: More on maximal and minimal ranks of Schur complements with applications. Appl. Math. Comput. 152, 175–192 (2004) CrossRefGoogle Scholar
  17. 17.
    Tian, Y.: Rank equalities for block matrices and their Moore–Penrose inverses. Houston J. Math. 30, 483–510 (2004) zbMATHMathSciNetGoogle Scholar
  18. 18.
    Tian, Y.: Equalities and inequalities for inertias of Hermitian matrices with applications. Linear Algebra Appl. 433, 263–296 (2010) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tian, Y.: Rank and inertia of submatrices of the Moore–Penrose inverse of a Hermitian matrix. Electron. J. Linear Algebra 20, 226–240 (2010) MathSciNetGoogle Scholar
  20. 20.
    Tian, Y.: Extremal ranks of a quadratic matrix expression with applications. Linear Multilinear Algebra (2010, in press) Google Scholar
  21. 21.
    Tian, Y.: Completing a block Hermitian matrix with maximal and minimal ranks and inertias. Electron. Linear Algebra Appl. 21, 124–141 (2010) Google Scholar
  22. 22.
    Tian, Y., Cheng, S.: The maximal and minimal ranks of ABXC with applications. New York J. Math. 9, 345–362 (2003) zbMATHMathSciNetGoogle Scholar
  23. 23.
    Tian, Y., Styan, G.P.H.: Rank equalities for idempotent and involutory matrices. Linear Algebra Appl. 335, 101–117 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Tian, Y., Styan, G.P.H.: Rank equalities for idempotent matrices with applications. J. Comput. Appl. Math. 191, 77–97 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Tian, Y., Takane, Y.: The inverse of any two-by-two nonsingular partitioned matrix and three matrix inverse completion problems. Comput. Math. Appl. 57, 1294–1304 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Paige, C.C., Saunders, M.A.: Towards a generalized singular value decomposition. SIAM J. Numer. Anal. 18, 398–405 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Marsaglia, G., Styan, G.P.H.: Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2, 269–292 (1974) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985) zbMATHGoogle Scholar
  29. 29.
    Mirsky, L.: An Introduction to Linear Algebra. Dover, New York (1990). Second Corrected Reprint Edition zbMATHGoogle Scholar
  30. 30.
    Haynsworth, E.V.: Determination of the inertia of a partitioned Hermitian matrix. Linear Algebra Appl. 1, 73–81 (1968) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Haynsworth, E.V., Ostrowski, A.M.: On the inertia of some classes of partitioned matrices. Linear Algebra Appl. 1, 299–316 (1968) zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Fujioka, H., Hara, S.: State covariance assignment problem with measurement noise a unified approach based on a symmetric matrix equation. Linear Algebra Appl. 203/204, 579–605 (1994) CrossRefMathSciNetGoogle Scholar
  33. 33.
    Yasuda, K., Skelton, R.E.: Assigning controllability, and observability Gramians in feedback control. J. Guid. Control Dyn. 14, 878–885 (1990) CrossRefMathSciNetGoogle Scholar
  34. 34.
    Gahinet, P., Apkarian, P.: A linear matrix inequality approach to H control. Internat. J. Robust Nonlinear Control 4, 421–448 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Iwasaki, T., Skelton, R.E.: All controllers for the general Open image in new window control problem: LMI existence conditions and state space formulas. Automatica 30, 1307–1317 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Scherer, C.W.: A complete algebraic solvability test for the nonstrict Lyapunov inequality. Syst. Control Lett. 25, 327–335 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Skelton, R.E., Iwasaki, T., Grigoriadis, K.M.: A Unified Algebraic Approach to Linear Control Design. Taylor & Francis, London (1998) Google Scholar
  38. 38.
    Groß, J.: A note on the general Hermitian solution to AXA =B. Bull. Malays. Math. Soc. (2nd Ser.) 21, 57–62 (1998) zbMATHGoogle Scholar
  39. 39.
    Cain, B.E.: The inertia of a Hermitian matrix having prescribed diagonal blocks. Linear Algebra Appl. 37, 173–180 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Cain, B.E., de Sá, E.M.: The inertia of a Hermitian matrix having prescribed complementary principal submatrices. Linear Algebra Appl. 37, 161–171 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Cain, B.E., de Sá, E.M.: The inertia of Hermitian matrices with a prescribed 2×2 block decomposition. Linear Multilinear Algebra 31, 119–130 (1992) zbMATHCrossRefGoogle Scholar
  42. 42.
    Cohen, N., Dancis, J.: Inertias of block band matrix completions. SIAM J. Matrix Anal. Appl. 19, 583–612 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Cohen, N., Johnson, C.R., Rodman, L., Woerdeman, H.J.: Rank completions of partial matrices. Oper. Theory Adv. Appl. 40, 165–185 (1989) MathSciNetGoogle Scholar
  44. 44.
    Constantinescu, T., Gheondea, A.: The negative signature of some Hermitian matrices. Linear Algebra Appl. 178, 17–42 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Da Fonseca, C.M.: The inertia of certain Hermitian block matrices. Linear Algebra Appl. 274, 193–210 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Dancis, J.: The possible inertias for a Hermitian matrix and its principle submatrices. Linear Algebra Appl. 85, 121–151 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Dancis, J.: Poincaré’s inequalities and Hermitian completions of certain partial matrices. Linear Algebra Appl. 167, 219–225 (1992) CrossRefMathSciNetGoogle Scholar
  48. 48.
    Geelen, J.F.: Maximum rank matrix completion. Linear Algebra Appl. 288, 211–217 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Gheondea, A.: One-step completions of Hermitian partial matrices with minimal negative signature. Linear Algebra Appl. 173, 99–114 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Gohberg, I., Kaashoek, M.A., van Schagen, F.: Partially Specified Matrices and Operators: Classification, Completion, Applications. Operator Theory Adv. Appl., vol. 79. Birkhauser, Boston (1995) zbMATHGoogle Scholar
  51. 51.
    Grone, J., Johnson, C.R., de Sá, E.M., Wolkowitz, H.: Positive definite completions of partial Hermitian matrices. Linear Algebra Appl. 58, 109–124 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Maddocks, J.H.: Restricted quadratic forms, inertia theorems and the Schur complement. Linear Algebra Appl. 108, 1–36 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Takahashi, K.: Invertible completions of operator matrices. Integral Equ. Oper. Theory 21, 355–361 (1995) zbMATHCrossRefGoogle Scholar
  54. 54.
    Woerdeman, H.J.: Minimal rank completions for block matrices. Linear Algebra Appl. 121, 105–122 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Woerdeman, H.J.: Toeplitz minimal rank completions. Linear Algebra Appl. 202, 267–278 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Woerdeman, H.J.: Minimal rank completions of partial banded matrices. Linear Multilinear Algebra 36, 59–68 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Woerdeman, H.J.: Hermitian and normal completions. Linear Multilinear Algebra 42, 239–280 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Harvey, N.J.A., Karger, D.R., Yekhanin, S.: The complexity of matrix completion. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, Association for Computing Machinery, pp. 1103–1111. SIAM, New York (2006) CrossRefGoogle Scholar
  59. 59.
    Laurent, M.: Matrix completion problems. In: Floudas, C., Pardalos, P. (eds.) The Encyclopedia of Optimization, vol. III, pp. 221–229. Kluwer Academic, Dordrecht (2001) Google Scholar
  60. 60.
    Mahajan, M., Sarma, J.: On the complexity of matrix rank and rigidity. In: Lecture Notes in Computer Science, vol. 4649, pp. 269–280. Springer, New York (2007) Google Scholar
  61. 61.
    Baksalary, J.K., Kala, R.: Symmetrizers of matrices. Linear Algebra Appl. 35, 51–62 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Venkaiah, V.Ch., Sen, S.K.: Computing a matrix symmetrizer exactly using modified multiple modulus residue arithmetic. J. Comput. Appl. Math. 21, 27–40 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Khatskevich, V.A., Ostrovskii, M.I., Shulman, V.S.: Quadratic inequalities for Hilbert space operators. Integral. Equ. Oper. Theory 59, 19–34 (2007) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Applied MathematicsShanghai Finance UniversityShanghaiChina
  2. 2.China Economics and Management AcademyCentral University of Finance and EconomicsBeijingChina

Personalised recommendations