Advertisement

Journal of Optimization Theory and Applications

, Volume 148, Issue 2, pp 257–280 | Cite as

A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality

  • M. C. Campi
  • S. Garatti
Article

Abstract

In this paper, we study the link between a Chance-Constrained optimization Problem (CCP) and its sample counterpart (SP). SP has a finite number, say N, of sampled constraints. Further, some of these sampled constraints, say k, are discarded, and the final solution is indicated by \(x^{\ast}_{N,k}\). Extending previous results on the feasibility of sample convex optimization programs, we establish the feasibility of \(x^{\ast}_{N,k}\) for the initial CCP problem.

Constraints removal allows one to improve the cost function at the price of a decreased feasibility. The cost improvement can be inspected directly from the optimization result, while the theory here developed permits to keep control on the other side of the coin, the feasibility of the obtained solution. In this way, trading feasibility for performance is put on solid mathematical grounds in this paper.

The feasibility result here obtained applies to a vast class of chance-constrained optimization problems, and has the distinctive feature that it holds true irrespective of the algorithm used to discard k constraints in the SP problem. For constraints discarding, one can thus, e.g., resort to one of the many methods introduced in the literature to solve chance-constrained problems with discrete distribution, or even use a greedy algorithm, which is computationally very low-demanding, and the feasibility result remains intact.

We further prove that, if constraints in the SP problem are optimally removed—i.e., one deletes those constraints leading to the largest possible cost improvement—, then a precise optimality link to the original chance-constrained problem CCP in addition holds.

Keywords

Chance-constrained optimization Stochastic optimization Convex optimization Sample-based optimization Randomized methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag. Sci. 4, 235–263 (1958) CrossRefGoogle Scholar
  2. 2.
    Miller, L.B., Wagner, H.: Chance-constrained programming with joint constraints. Oper. Res. 13, 930–945 (1965) zbMATHCrossRefGoogle Scholar
  3. 3.
    Prèkopa, A.: On probabilistic constrained programming. In: Proceedings of the Princeton Symposium on Mathematical Programming. Princeton University Press, Princeton (1970) Google Scholar
  4. 4.
    Prèkopa, A.: Contributions to the theory of stochastic programming. Math. Program. 4, 202–221 (1973) zbMATHCrossRefGoogle Scholar
  5. 5.
    Prèkopa, A.: Stochastic Programming. Kluwer, Boston (1995) Google Scholar
  6. 6.
    Prèkopa, A.: Probabilistic programming. In: Ruszczyǹski, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10. Elsevier, London (2003) CrossRefGoogle Scholar
  7. 7.
    Dentcheva, D.: Optimization models with probabilistic constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design under Uncertainty. Springer, London (2006) Google Scholar
  8. 8.
    Henrion, R., Strugarek, C.: Convexity of chance constraints with independent random variables. Comput. Optim. Appl. 41, 263–276 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88, 411–424 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ben-Tal, A., Nemirovski, A.: Robust optimization—methodology and applications. Math. Program. Ser. B 92, 453–480 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17, 969–996 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Henrion, R., Römisch, W.: Hölder and Lipschitz stability of solution sets in programs with probabilistic constraints. Math. Program. 100, 589–611 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Henrion, R., Römisch, W.: Metric regularity and quantitative stability in stochastic programs with probabilistic constraints. Math. Program. 84, 55–88 (1999) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Prèkopa, A.: Sharp bound on probabilities using linear programming. Oper. Res. 38, 227–239 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Sen, S.: Relaxations for the probabilistically constrained programs with discrete random variables. Oper. Res. Lett. 11, 81–86 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Dentcheva, D., Prèkopa, A., Ruszczyǹski, A.: Concavity and efficient points of discrete distributions in probabilistic programming. Math. Program. 89, 55–77 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Dentcheva, D., Prèkopa, A., Ruszczyǹski, A.: On convex probabilistic programming with discrete distribution. Nonlinear Anal. 47, 1997–2009 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Beraldi, P., Ruszczyǹski, A.: A branch and bound method for stochastic integer problems under probabilistic constraints. Optim. Methods Softw. 17, 359–382 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Dentcheva, D., Lai, B., Ruszczyǹski, A.: Dual methods for probabilistic optimization problems. Math. Methods Oper. Res. 60, 331–346 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Prèkopa, A.: Dual method for a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution. Z. Oper. Res. 34, 441–461 (1990) MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ruszczyǹski, A.: Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra. Math. Program. 93(2), 195–215 (2002) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Luedtke, J., Ahmed, S., Nemhauser, G.L.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122, 247–272 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Vogel, S.: A stochastic approach to stability in stochastic programming. J. Comput. Appl. Math. 56(1–2), 65–96 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Tempo, R., Bai, E.W., Dabbene, F.: Probabilistic robustness analysis: explicit bounds for the minimum number of samples. Syst. Control Lett. 30, 237–242 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Bai, E.W., Tempo, R., Fu, M.: Worst-case properties of the uniform distribution and randomized algorithms for robustness analysis. Math. Control Signals Syst. 11, 183–196 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Calafiore, G., Dabbene, F., Tempo, R.: Randomized algorithms for probabilistic robustness with real and complex structured uncertainty. IEEE Trans. Autom. Control 45(12), 2218–2235 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Shapiro, A.: Monte-Carlo sampling methods. In: Ruszczyǹski, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10. Elsevier, London (2003) CrossRefGoogle Scholar
  29. 29.
    Pflug, G.C.: Stochastic optimization and statistical inference. In: Ruszczyǹski, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10. Elsevier, London (2003) CrossRefGoogle Scholar
  30. 30.
    de Farias, D.P., Van Roy, B.: On constraints sampling in the linear programming approach to approximate dynamic programming. Math. Oper. Res. 29(3), 462–478 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Erdoğan, E., Iyengar, G.: Ambiguous chance constrained problems and robust optimization. Math. Program. Ser. B 107(1–2), 37–61 (2006) zbMATHCrossRefGoogle Scholar
  32. 32.
    Nemirovski, A., Shapiro, A.: Scenario approximations of chance constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design under Uncertainty. Springer, London (2006) Google Scholar
  33. 33.
    Polyak, B.T., Scherbakov, P.S.: Randomized methods for solving semidefinite programming. In: Granichin, O.N. (ed.) Stochastic Optimization in Informatics, vol. 10, pp. 38–70. St.-Petersburg University Press, London (2006) Google Scholar
  34. 34.
    Shapiro, A., Dentcheva, D., Ruszczyǹski, A.: Lectures on Stochastic Programming—Modeling and Theory. MPS-SIAM, Philadelphia (2009) zbMATHCrossRefGoogle Scholar
  35. 35.
    Alamo, T., Tempo, R., Camacho, E.F.: Statistical learning theory: a pack-based strategy for uncertain feasibility and optimization problems. In: Blondel, V.D., Boyd, S.P., Kimura, H. (eds.) Recent Advances in Learning and Control, vol. 10. Springer, London (2008) Google Scholar
  36. 36.
    Polyak, B.T., Tempo, R.: Probabilistic robust design with linear quadratic regulators. Syst. Control Lett. 43, 343–353 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Fujisaki, Y., Dabbene, F., Tempo, R.: Probabilistic robust design of LPV control systems. Automatica 39, 1323–1337 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Ishii, H., Basar, T., Tempo, R.: Randomized algorithms for quadratic stability of quantized sampled-data systems. Automatica 40, 839–846 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Alpcan, T., Basar, T., Tempo, R.: Randomized algorithms for stability and robustness of high-speed communication networks. IEEE Trans. Neural Netw. 16, 1229–1241 (2005) CrossRefGoogle Scholar
  40. 40.
    Tempo, R., Calafiore, G., Dabbene, F.: Randomized Algorithms for Analysis and Control of Uncertain Systems. Springer, London (2005) zbMATHGoogle Scholar
  41. 41.
    Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Alamo, T., Tempo, R., Camacho, E.F.: Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems. IEEE Trans. Autom. Control 54, 2545–2559 (2009) MathSciNetCrossRefGoogle Scholar
  43. 43.
    Calafiore, G., Campi, M.C.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102(1), 25–46 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Calafiore, G., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Autom. Control 51(5), 742–753 (2006) MathSciNetCrossRefGoogle Scholar
  45. 45.
    Campi, M.C., Garatti, S.: The exact feasibility of randomized solutions of uncertain convex programs. SIAM J. Optim. 19(3), 1211–1230 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Vidyasagar, M.: A Theory of Learning and Generalization: with Applications to Neural Networks and Control Systems. Springer, London (1997) zbMATHGoogle Scholar
  47. 47.
    Shiryaev, A.N.: Probability. Springer, New York (1996) Google Scholar
  48. 48.
    Matoušek, J.: On geometric optimization with few violated constraints. Discrete Comput. Geom. 14, 365–384 (1995) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità di BresciaBresciaItaly
  2. 2.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations