Avoidance Control on Time Scales

  • E. Pawłuszewicz
  • D. F. M. Torres


We consider dynamic systems on time scales under the control of two agents. One of the agents desires to keep the state of the system out of a given set regardless of the other agent’s actions. Leitmann’s avoidance conditions are proved to be valid for dynamic systems evolving on an arbitrary time scale.


Avoidance Linear control systems Time scales 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, R., Leitmann, G.: Avoidance control. Trans. ASME Ser. G, J. Dyn. Syst. Meas. Control 94, 152–154 (1972) MathSciNetGoogle Scholar
  2. 2.
    Barmish, B.R., Schmitendorf, W.E., Leitmann, G.: A note on avoidance control. Trans. ASME Ser. G, J. Dyn. Syst. Meas. Control 103(1), 69–70 (1981) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Corless, M., Leitmann, G.: Adaptive controllers for avoidance or evasion in an uncertain environment: some examples. Comput. Math. Appl. 18(1–3), 161–170 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Corless, M., Leitmann, G., Skowronski, J.M.: Adaptive control for avoidance or evasion in an uncertain environment. Comput. Math. Appl. 13(1–3), 1–11 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Leitmann, G.: Guaranteed avoidance strategies. J. Optim. Theory Appl. 32(4), 569–576 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Leitmann, G., Skowroński, J.: Avoidance control. J. Optim. Theory Appl. 23(4), 581–591 (1977) zbMATHCrossRefGoogle Scholar
  7. 7.
    Leitmann, G., Skowroński, J.: A note on avoidance control. Optim. Control Appl. Methods 4(4), 335–342 (1983) zbMATHCrossRefGoogle Scholar
  8. 8.
    Stipanović, D.M.: A Survey and some new results in avoidance control. In: Rodellar, J., Reithmeier, E. (eds.) Proceedings of the 15th International Workshop on Dynamics and Control, IWDC 2009, pp. 166–173 Google Scholar
  9. 9.
    Agarwal, R.P., Bohner, M.: Basic calculus on time scales and some of its applications. Results Math. 35(1–2), 3–22 (1999) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001) zbMATHGoogle Scholar
  11. 11.
    Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003) zbMATHGoogle Scholar
  12. 12.
    Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control. American Institute of Mathematical Sciences (AIMS), Springfield (2007) zbMATHGoogle Scholar
  13. 13.
    Cabada, A., Vivero, D.R.: Criterions for absolute continuity on time scales. J. Differ. Equ. Appl. 11(11), 1013–1028 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic, Dordrecht (1988). Translated from the Russian Google Scholar
  15. 15.
    Bartosiewicz, Z., Pawłuszewicz, E.: Realizations of linear control systems on time scales. Control Cybern. 35(4), 769–786 (2006) zbMATHGoogle Scholar
  16. 16.
    DaCunha, J.J.: Lyapunov stability and Floquet theory for nonautonomous linear dynamic systems on time scales. Ph.D. thesis, Baylor University (2004) Google Scholar
  17. 17.
    DaCunha, J.J.: Stability for time varying linear dynamic systems on time scales. J. Comput. Appl. Math. 176(2), 381–410 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Bartosiewicz, Z., Piotrowska, E., Wyrwas, M.: Stability, stabilization and observers of linear control systems on time scales. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, USA (2007) Google Scholar
  19. 19.
    Cabada, A., Vivero, D.R.: Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral: application to the calculus of Δ-antiderivatives. Math. Comput. Model. 43(1–2), 194–207 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Deniz, A.: Measure theory on time scales. MSc thesis, Graduate School of Engineering and Sciences of Izmir Institute of Technology, Turkey (2007) Google Scholar
  21. 21.
    Kolmogorov, A.N., Fomīn, S.V.: Introductory Real Analysis. Dover, New York (1975). Translated from the second Russian edition and edited by Richard A. Silverman Google Scholar
  22. 22.
    Sontag, E.D.: Mathematical Control Theory. Springer, New York (1990) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations