Weak Convergence of an Iterative Method for Pseudomonotone Variational Inequalities and Fixed-Point Problems

  • L. C. Ceng
  • M. Teboulle
  • J. C. Yao


We consider an iterative scheme for finding a common element of the set of solutions of a pseudomonotone, Lipschitz-continuous variational inequality problem and the set of common fixed points of N nonexpansive mappings. The proposed iterative method combines two well-known schemes: extragradient and approximate proximal methods. We derive a necessary and sufficient condition for weak convergence of the sequences generated by the proposed scheme.


Variational inequalities Nonexpansive mappings Extragradient methods Approximate proximal methods Pseudomonotone mappings Fixed points Weak convergence Opial condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vols. I and II. Springer, New York (2003) Google Scholar
  2. 2.
    Antipin, A.S.: Methods for solving variational inequalities with related constraints. Comput. Math. Math. Phys. 40, 1239–1254 (2000) zbMATHMathSciNetGoogle Scholar
  3. 3.
    Antipin, A.S., Vasiliev, F.P.: Regularized prediction method for solving variational inequalities with an inexactly given set. Comput. Math. Math. Phys. 44, 750–758 (2004) MathSciNetGoogle Scholar
  4. 4.
    Popov, L.D.: On a one-stage method for solving lexicographic variational inequalities. Izv. Vyssh. Uchebn. Zaved. Mat. 12, 71–81 (1998) Google Scholar
  5. 5.
    Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000) zbMATHGoogle Scholar
  6. 6.
    Yamada, I.: The hybrid steepest-descent method for the variational inequality problem over the intersection of fixed-point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 473–504. Kluwer Academic, Dordrecht (2001) Google Scholar
  7. 7.
    Berinde, V.: Iterative Approximation of Fixed Points. Lecture Notes in Mathematics, vol. 1912. Springer, New York (2007) zbMATHGoogle Scholar
  8. 8.
    Ceng, L.C., Yao, J.C.: An extragradient-like approximation method for variational inequality problems and fixed point problems. Appl. Math. Comput. 190, 206–215 (2007) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ceng, L.C., Yao, J.C.: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwan. J. Math. 10(5), 1293–1303 (2006) Google Scholar
  10. 10.
    Iiduka, H., Takahashi, W.: Strong convergence theorem by a hybrid method for nonlinear mappings of nonexpansive and monotone type and applications. Adv. Nonlinear Var. Inequal. 9, 1–10 (2006) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Iiduka, H., Takahashi, W., Toyoda, M.: Approximation of solutions of variational inequalities for monotone mappings. Panam. Math. J. 14, 49–61 (2004) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128, 191–201 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Math. Metody 12, 746–756 (1976); [English translation: Matecon 13, 35–49 (1977)] Google Scholar
  15. 15.
    Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Goebel, K., Kirk, W.A.: Topics on Metric Fixed-Point Theory. Cambridge University Press, Cambridge (1990) CrossRefGoogle Scholar
  18. 18.
    Polyak, B.T.: Introduction to Optimization. Optimization Software Inc., New York (1987) Google Scholar
  19. 19.
    Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Scientific Computing Key Laboratory of Shanghai UniversitiesShanghaiChina
  3. 3.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  4. 4.Department of Applied MathematicsNational Sun Yat-sen UniversityKaohsiungRepublic of China

Personalised recommendations