A Differential Game Related to Terrorism: Nash and Stackelberg Strategies

  • A. J. NovakEmail author
  • G. Feichtinger
  • G. Leitmann


The question of how best to prosecute the ‘war on terror’ leads to strategic interaction in an intertemporal setting. We consider a nonzero sum differential game between a government and a terrorist organisation. Due to the state-separability of the game we are able to determine Nash and Stackelberg solutions in analytic form. Their comparison as well as the sensitivity analysis deliver interesting insight into the design of efficient measures to combat terror.


Differential games Counterterror measures Nash solution Stackelberg solution State-separable games 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keohane, N.O., Zeckhauser, R.J.: The ecology of terror defense. J. Risk Uncertain. 26, 201–229 (2003) zbMATHCrossRefGoogle Scholar
  2. 2.
    Kaplan, E.H., Mintz, A., Mishal, S., Samban, C.: What happened to suicide bombings in Israel? Insights from a terror stock model. Stud. Confl. Terror. 28, 225–235 (2005) CrossRefGoogle Scholar
  3. 3.
    Caulkins, J.P., Feichtinger, G., Grass, D., Tragler, G.: Optimal control of terrorism and global reputation: A case study with novel threshold behavior. Oper. Res. Lett. 37, 387–391 (2009) zbMATHCrossRefGoogle Scholar
  4. 4.
    Caulkins, J.P., Feichtinger, G., Grass, D., Tragler, G.: Optimizing counterterror operations: Should one fight with “Fire” or “Water”? Comput. Oper. Res. 35, 1874–1885 (2008) zbMATHCrossRefGoogle Scholar
  5. 5.
    Behrens, D.A., Caulkins, J.P., Feichtinger, G., Tragler, G.: Incentive Stackelberg Strategies for a Dynamic Game on Terrorism. Advances in Dynamic Game Theory. Annals of the International Society of Dynamic Games, vol. 9 (2007). Edited by S. Jorgensen, M. Quincampoix, T.L. Vincent Google Scholar
  6. 6.
    Udwadia, F., Leitmann, G., Lambertini, L.: A dynamical model of terrorism. Discrete Dyn. Nat. Soc. 2006, 85653 (2006) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Feichtinger, G., Novak, A.J.: Terror and counterterror operations: Differential game with cyclical Nash solution. J. Optim. Theory Appl. 139(3), 541–556 (2008) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dockner, E., Jorgensen, S., Van Long, N., Sorger, G.: Differential Games in Economics and Management Science. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  9. 9.
    Dockner, E.J., Feichtinger, G., Jorgensen, S.: Tractable classes of nonzero-sum open-loop Nash differential games: Theory and examples. J. Optim. Theory Appl. 45, 179–197 (1985) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Grass, D., Caulkins, J.P., Feichtinger, G., Tragler, G., Behrens, D.A.: Optimal Control of Nonlinear Processes. With Applications in Drugs, Corruption and Terror. Springer, Berlin (2008) zbMATHGoogle Scholar
  11. 11.
    Leitmann, G.: The Calculus of Variations and Optimal Control, Mathematical Concepts and Methods in Science and Engineering, vol. 24. Plenum, New York (1981) Google Scholar
  12. 12.
    Leitmann, G., Stalford, H.: A sufficiency theorem for optimal control. J. Optim. Theory Appl. 8(3), 169–174 (1971) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Stalford, H., Leitmann, G.: Sufficiency conditions for Nash equilibria in N-person differential games. In: Blaquiere, A. (ed.) Topics in Differential Games, pp. 345–376. North-Holland/American Elsevier, Amsterdam (1973) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dept. of Business AdministrationUniversity of ViennaViennaAustria
  2. 2.Institute for Mathematical Methods in Economics, Dept. ORDYSVienna University of TechnologyViennaAustria
  3. 3.College of EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations