Nonsmooth Vector Optimization Problems and Minty Vector Variational Inequalities

  • Q. H. Ansari
  • G. M. Lee


The vector optimization problem may have a nonsmooth objective function. Therefore, we introduce the Minty vector variational inequality (Minty VVI) and the Stampacchia vector variational inequality (Stampacchia VVI) defined by means of upper Dini derivative. By using the Minty VVI, we provide a necessary and sufficient condition for a vector minimal point (v.m.p.) of a vector optimization problem for pseudoconvex functions involving Dini derivatives. We establish the relationship between the Minty VVI and the Stampacchia VVI under upper sign continuity. Some relationships among v.m.p., weak v.m.p., solutions of the Stampacchia VVI and solutions of the Minty VVI are discussed. We present also an existence result for the solutions of the weak Minty VVI and the weak Stampacchia VVI.

Minty vector variational inequalities Stampacchia vector variational inequalities Vector optimization problems Vector minimal points Weak vector minimal points Dini derivative Pseudoconvex functions Upper sign continuity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Homidan, S., Ansari, Q.H.: Generalized minty vector variational-like inequalities and vector optimization problems. J. Optim. Theory Appl. 144(1), (2010) Google Scholar
  2. 2.
    Ansari, Q.H., Yao, J.C.: On nondifferentaible and nonconvex vector optimization problems. J. Optim. Theory Appl. 106(3), 475–488 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Giannessi, F.: On minty variational principle. In: Giannessi, F., Komlòsi, S., Tapcsáck, T. (eds.) New Trends in Mathematical Programming, pp. 93–99. Kluwer Academic, Dordrecht (1998) Google Scholar
  4. 4.
    Giannessi, F.: Vector Variational Inequalities and Vector Equilibria: Mathematical Theories. Kluwer Academic, Dordrecht (2000) zbMATHGoogle Scholar
  5. 5.
    Komlòsi, S.: On the stampacchia and minty variational inequalities. In: Giorgi, G., Rossi, F. (eds.) Generalized Convexity and Optimization for Economic and Financial Decisions, pp. 231–260. Pitagora Editrice, Bologna (1999) Google Scholar
  6. 6.
    Lee, G.M.: On relations between vector variational inequality and vector optimization problem. In: Yang, X.Q., Mees, A.I., Fisher, M.E., Jennings, L.S. (eds.) Progress in Optimization, II: Contributions from Australasia, pp. 167–179. Kluwer Academic, Dordrecht (2000) Google Scholar
  7. 7.
    Lee, G.M., Kim, D.S., Kuk, H.: Existence of solutions for vector optimization problems. J. Math. Anal. Appl. 220, 90–98 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lee, G.M., Kim, D.S., Lee, B.S., Yen, N.D.: Vector variational inequality as a tool for studying vector optimization problems. Nonlinear Anal.: Theory Methods Appl. 34, 745–765 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ruiz-Garzón, G., Osuna-Gómez, R., Rufián-Lizana, A.: Relationships between vector variational-like inequality and optimization problems. Eur. J. Oper. Res. 157, 113–119 (2004) zbMATHCrossRefGoogle Scholar
  10. 10.
    Yang, X.M., Yang, X.Q., Teo, K.L.: Some remarks on the minty vector variational inequality. J. Optim. Theory Appl. 121(1), 193–201 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Crespi, G.P., Ginchev, I., Rocca, M.: Minty variational inequalities, increase along rays property and optimization. J. Optim. Theory Appl. 123(3), 479–496 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Crespi, G.P., Ginchev, I., Rocca, M.: Existence of solutions and star-shapedness in minty variational inequalities. J. Glob. Optim. 32, 485–494 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Crespi, G.P., Ginchev, I., Rocca, M.: Some remarks on the minty vector variational principle. J. Math. Anal. Appl. 345, 165–175 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sach, P.H., Penot, J.-P.: Charaterizations of generalized convexities via generalized directional derivative. Numer. Funct. Anal. Optim. 19(5–6), 615–634 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Komlòsi, S.: Generalized monotonicity and generalized convexity. J. Optim. Theory Appl. 84(2), 361–376 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Giorgi, G., Komlósi, S.: Dini derivatives in optimization—Part III. Riv. Mat. Sci. Econ. Soc. 18(1), 47–63 (1995) zbMATHGoogle Scholar
  17. 17.
    Diewert, W.E.: Alternative charaterizations of six kinds of quasiconcavity in the nondifferentiable case with applications to nonsmooth programming. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 51–93. Academic Press, New York (1981) Google Scholar
  18. 18.
    Lalitha, C.S., Mehta, M.: Vector variational inequalities with cone-pseudomonotone bifunctions. Oprimization 54(3), 327–338 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hadjisavvas, N.: Continuity and maximality properties of pseudomonotone operators. J. Convex Anal. 10(2), 459–469 (2003) MathSciNetGoogle Scholar
  20. 20.
    Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Applied MathematicsPukyong National UniversityBusanKorea

Personalised recommendations