Implicit Iterative Methods for Nonconvex Variational Inequalities

Technical Note

Abstract

In this paper, we suggest and analyze an implicit iterative method for solving nonconvex variational inequalities using the technique of the projection operator. We also discuss the convergence of the iterative method under suitable weaker conditions. Our method of proof is very simple as compared with other techniques.

Keywords

Variational inequalities Nonconvex sets Monotone operators Iterative method Convergence 

References

  1. 1.
    Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C.R. Acad. Sci. Paris 258, 4413–4416 (1964) MATHMathSciNetGoogle Scholar
  2. 2.
    Bounkhel, M., Tadji, L., Hamdi, A.: Iterative schemes to solve nonconvex variational problems. J. Inequal. Pure Appl. Math.4, 1–14 (2003) Google Scholar
  3. 3.
    Clarke, F.H., Ledyaev, Y.S., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, Berlin (1998) MATHGoogle Scholar
  4. 4.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. SIAM, Philadelphia (2000) MATHGoogle Scholar
  5. 5.
    Noor, M.A.: General variational inequalities. Appl. Math. Lett. 1, 119–121 (1988) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Noor, M.A.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Noor, M.A.: Iterative schemes for nonconvex variational inequalities. J. Optim. Theory Appl. 121, 385–395 (2004) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Noor, M.A.: Projection methods for nonconvex variational inequalities. Optim. Lett. (2009) Google Scholar
  9. 9.
    Noor, M.A., Noor, K.I., Rassias, T.M.: Some aspects of variational inequalities. J. Comput. Appl. Math. 47, 285–312 (1993) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352, 5231–5249 (2000) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Mathematics DepartmentCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations