Preconditioning the Pressure Tracking in Fluid Dynamics by Shape Hessian Information

Article

Abstract

Potential flow pressure matching is a classical inverse design aerodynamic problem. The resulting loss of regularity during the optimization poses challenges for shape optimization with normal perturbation of the surface mesh nodes. Smoothness is not enforced by the parameterization but by a proper choice of the scalar product based on the shape Hessian, which is derived in local coordinates for starshaped domains. Significant parts of the Hessian are identified and combined with an aerodynamic panel solver. The resulting shape Hessian preconditioner is shown to lead to superior convergence properties of the resulting optimization method. Additionally, preconditioning gives the potential for level independent convergence.

Keywords

Shape optimization Aerodynamic optimization Hadamard gradient Shape Hessian Preconditioning 

References

  1. 1.
    Gauger, N.R.: Das Adjungiertenverfahren in der aerodynamischen Formoptimierung. Forschungsbericht Deutsches Zentrum für Luft- und Raumfahrt e.V. (2003) Google Scholar
  2. 2.
    Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3, 23–260 (1988) CrossRefGoogle Scholar
  3. 3.
    Arian, E., Ta’asan, S.: Analysis of the Hessian for aerodynamic optimization: Inviscid flow. Technical report, 96-28, Institute for Computer Applications in Science and Engineering (1996) Google Scholar
  4. 4.
    Arian, E., Vatsa, V.N.: A preconditioning method for shape optimization governed by the Euler equations. Technical report, 98-14, Institute for Computer Applications in Science and Engineering (1998) Google Scholar
  5. 5.
    Eppler, K., Harbrecht, H.: A regularized Newton method in electrical impedance tomography using shape Hessian information. Control Cybern. 34(1) (2005) Google Scholar
  6. 6.
    Jameson, A.: Future research avenues in computational engineering and design. In: Ball, J.M., Hunt, J.C.R. (eds.) Proceedings of the Fourth International Congress on Industrial and Applied Mathematics. Oxford University Press, New York (2000) Google Scholar
  7. 7.
    Delfour, M., Zolésio, J.-P.: Shapes and Geometries. SIAM, Philadelphia (2001) MATHGoogle Scholar
  8. 8.
    Sokolowski, J., Zolésio, J.-P.: Introduction to Shape Optimization. Springer, Berlin (1992) MATHGoogle Scholar
  9. 9.
    Delfour, M., Zolésio, J.-P.: Velocity method and Lagrangian formulation for the computation of the shape Hessian. SIAM Control Optim. 29, 1414–1442 (1991) MATHCrossRefGoogle Scholar
  10. 10.
    Dambrine, M., Pierre, M.: About stability of equilibrium shapes. Math. Model. Numer. Anal. 34, 811–834 (2000) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dambrine, M.: On variations of the shape Hessian and sufficient conditions for the stability of critical shapes. Rev. R. Acad. Cienc. Ser. A Mat. 96(1), 95–121 (2002) MATHMathSciNetGoogle Scholar
  12. 12.
    Eppler, K.: Second derivatives and sufficient optimality conditions for shape functionals. Control Cybern. 29, 485–512 (2000) MATHMathSciNetGoogle Scholar
  13. 13.
    Eppler, K.: Boundary integral representations of second derivatives in shape optimization. Discuss. Math. Differ. Inclusion Control Optim. 20, 63–78 (2000) MATHMathSciNetGoogle Scholar
  14. 14.
    Eppler, K., Harbrecht, H., Schneider, R.: On Convergence in Elliptic Shape Optimization. SIAM J. Control Optim. 45, 61–83 (2007) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Schmidt, S., Schulz, V.: Impulse response approximations of discrete shape Hessians with application in CFD. DFG-preprint, SPP1253-10-02 (2008) Google Scholar
  16. 16.
    Gherman, I., Schulz, V.: Preconditioning of one-shot pseudo-timestepping methods for shape optimization. Proc. Appl. Math. Mech. 5(1), 741–742 (2005) CrossRefGoogle Scholar
  17. 17.
    Kim, S., Hosseini, K., Leoviriyakit, K., Jameson, A.: Enhancement of adjoint design methods via optimization of adjoint parameters. Presented at the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 10–13 January 2005 Google Scholar
  18. 18.
    Eppler, K., Harbrecht, H.: Numerical solution of elliptic shape optimization problems using wavelet-based BEM. Optim. Methods Softw. 18, 105–123 (2003) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Eppler, K., Harbrecht, H.: 2nd order shape optimization using wavelet BEM. Optim. Methods Softw. 21, 135–153 (2006) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Katz, J., Plotkin, A.: Low-Speed Aerodynamics—From Wing Theory to Panel Models. Int. edn. McGraw-Hill, New York (1991) Google Scholar
  21. 21.
    Jacobs, E.N., Ward, K.E., Pinkerton, R.M.: The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel. NACA report No. 460 (1933) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Technical University DresdenDresdenGermany
  2. 2.University TrierTrierGermany
  3. 3.German Aerospace Center (DLR)BraunschweigGermany

Personalised recommendations