Advertisement

Convergent Bounds for Stochastic Programs with Expected Value Constraints

Abstract

This article describes a bounding approximation scheme for convex multistage stochastic programs (MSP) that constrain the conditional expectation of some decision-dependent random variables. Expected value constraints of this type are useful for modelling a decision maker’s risk preferences, but they may also arise as artifacts of stage-aggregation. We develop two finite-dimensional approximate problems that provide bounds on the (infinite-dimensional) original problem, and we show that the gap between the bounds can be made smaller than any prescribed tolerance. Moreover, the solutions of the approximate MSPs give rise to a feasible policy for the original MSP, and this policy’s optimality gap is shown to be smaller than the difference of the bounds. The considered problem class comprises models with integrated chance constraints and conditional value-at-risk constraints. No relatively complete recourse is assumed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)

  2. 2.

    Kall, P., Wallace, S.W.: Stochastic Programming. Wiley, Chichester (1994)

  3. 3.

    Prékopa, A.: Stochastic Programming. Kluwer Academic, Dordrecht (1995)

  4. 4.

    Wallace, S.W., Ziemba, W.T. (eds.): Applications of Stochastic Programming. MPS/SIAM Series on Optimization, vol. 5. SIAM, Philadelphia (2005)

  5. 5.

    Kaut, M., Wallace, S.W.: Evaluation of scenario-generation methods for stochastic programming. Pac. J. Optim. 3(2), 257–271 (2007)

  6. 6.

    Høyland, K., Wallace, S.W.: Generating scenario trees for multistage decision problems. Manag. Sci. 47(2), 295–307 (2001)

  7. 7.

    Shapiro, A.: On complexity of multistage stochastic programs. Oper. Res. Lett. 34, 1–8 (2006)

  8. 8.

    Shapiro, A.: Inference of statistical bounds for multistage stochastic programming problems. Math. Methods Oper. Res. 58(1), 57–68 (2003)

  9. 9.

    Koivu, M.: Variance reduction in sample approximations of stochastic programs. Math. Program. Ser. A 103, 463–485 (2005)

  10. 10.

    Pennanen, T.: Epi-convergent discretizations of multistage stochastic programs via integration quadratures. Math. Program. Ser. B 116(1), 461–479 (2009)

  11. 11.

    Pflug, G.Ch.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. Ser. B 89, 251–271 (2001)

  12. 12.

    Hochreiter, R., Pflug, G.Ch.: Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Ann. Oper. Res. 156(1), 257–272 (2007)

  13. 13.

    Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming: an approach using probability metrics. Math. Program. Ser. A 95, 493–511 (2003)

  14. 14.

    Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24, 187–206 (2003)

  15. 15.

    Rachev, S.T., Römisch, W.: Quantitative stability in stochastic programming: the method of probability metrics. Math. Oper. Res. 27, 792–818 (2002)

  16. 16.

    Dantzig, G.B., Infanger, G.: Large-scale stochastic linear programs–importance sampling and Benders decomposition. Comput. Appl. Math. I, 111–120 (1992)

  17. 17.

    Dempster, M.A.H., Thompson, R.T.: EVPI-based importance sampling solution procedures for multistage stochastic linear programmes on parallel MIMD architectures. Ann. Oper. Res. 90, 161–184 (1999)

  18. 18.

    Ermoliev, Y.M., Gaivoronski, A.A.: Stochastic quasigradient methods for optimization of discrete event systems. Ann. Oper. Res. 39, 1–39 (1992)

  19. 19.

    Higle, J.L., Sen, S.: Stochastic decomposition: an algorithm for two-stage linear programs with recourse. Math. Oper. Res. 16, 650–669 (1991)

  20. 20.

    Infanger, G.: Planning under Uncertainty: Solving Large-Scale Stochastic Linear Programs. Boyd and Fraser, Danvers (1994)

  21. 21.

    Birge, J.R., Wets, R.J.-B.: Computing bounds for stochastic programming problems by means of a generalized moment problem. Math. Oper. Res. 12, 149–162 (1987)

  22. 22.

    Dupačová, J.: On minimax solutions of stochastic linear programming problems. Časopis Pěstování Mat. 91, 423–429 (1966). (As Žáčková)

  23. 23.

    Frauendorfer, K.: Solving SLP recourse problems with arbitrary multivariate distributions—the dependent case. Math. Oper. Res. 13, 377–394 (1988)

  24. 24.

    Gassmann, G., Ziemba, W.T.: A tight upper bound for the expectation of a convex function of a multivariate random variable. Math. Program. Study 27, 39–53 (1986)

  25. 25.

    Kall, P.: An upper bound for SLP using first and total second moments. Ann. Oper. Res. 30, 267–276 (1991)

  26. 26.

    Madansky, A.: Inequalities for stochastic linear programming problems. Manag. Sci. 6, 197–204 (1960)

  27. 27.

    Edirisinghe, N.C.P., Ziemba, W.T.: Bounding the expectation of a saddle function with application to stochastic programming. Math. Oper. Res. 19, 314–340 (1994)

  28. 28.

    Edirisinghe, N.C.P., Ziemba, W.T.: Bounds for two-stage stochastic programs with fixed recourse. Math. Oper. Res. 19, 292–313 (1994)

  29. 29.

    Frauendorfer, K.: Stochastic Two-Stage Programming. Lecture Notes in Economics and Mathematical Systems, vol. 392. Springer, Berlin (1992)

  30. 30.

    Frauendorfer, K.: Multistage stochastic programming: error analysis for the convex case. Z. Oper. Res. 39(1), 93–122 (1994)

  31. 31.

    Frauendorfer, K.: Barycentric scenario trees in convex multistage stochastic programming. Math. Program. 75(2), 277–294 (1996)

  32. 32.

    Kuhn, D.: Generalized Bounds for Convex Multistage Stochastic Programs. Lecture Notes in Economics and Mathematical Systems, vol. 548. Springer, Berlin (2004)

  33. 33.

    Wright, S.E.: Primal-dual aggregation and disaggregation for stochastic linear programs. Math. Oper. Res. 19(4), 893–908 (1994)

  34. 34.

    Kuhn, D.: Aggregation and discretization in multistage stochastic programming. Math. Program. Ser. A 113(1), 61–94 (2008)

  35. 35.

    Prékopa, A.: Contributions to the theory of stochastic programming. Math. Program. 4, 202–221 (1973)

  36. 36.

    Charnes, A., Cooper, W.W.: Chance-constrained programming. Manag. Sci. 6, 73–79 (1959/1960)

  37. 37.

    Klein Haneveld, W.K.: Duality in Stochastic Linear and Dynamic Programming. Lecture Notes in Economics and Mathematical Systems, vol. 274. Springer, Berlin (1985)

  38. 38.

    Klein Haneveld, W.K., van der Vlerk, M.H.: Integrated chance constraints: reduced forms and an algorithm. Comput. Manag. Sci. 3(4), 245–269 (2006)

  39. 39.

    Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2(3), 21–41 (2000)

  40. 40.

    Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26, 1443–1471 (2002)

  41. 41.

    Rockafellar, R.T., Wets, R.J.-B.: The optimal recourse problem in discrete time: L 1-multipliers for inequality constraints. SIAM J. Control Optim. 16, 16–36 (1978)

  42. 42.

    Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)

  43. 43.

    Rockafellar, R.T., Wets, R.J.-B.: Nonanticipativity and L 1-martingales in stochastic optimization problems. Math. Program. Study 6, 170–187 (1976)

  44. 44.

    Rockafellar, R.T., Wets, R.J.-B.: Stochastic convex programming: basic duality. Pac. J. Math. 62, 173–195 (1976)

  45. 45.

    Rockafellar, R.T., Wets, R.J.-B.: Stochastic convex programming: relatively complete recourse and induced feasibility. SIAM J. Control Optim. 14, 574–589 (1976)

  46. 46.

    Rockafellar, R.T., Wets, R.J.-B.: Stochastic convex programming: singular multipliers and extended duality. Pac. J. Math. 62, 507–522 (1976)

  47. 47.

    Dunford, N., Schwartz, J.T.: Linear Operators: Part I. Wiley, New York/Chichester/Brisbane/Toronto/Singapore (1988)

  48. 48.

    Pennanen, T.: Epi-convergent discretizations of multistage stochastic programs. Math. Oper. Res. 30(1), 245–256 (2005)

  49. 49.

    Heitsch, H., Römisch, W., Strugarek, C.: Stability of multistage stochastic programs. SIAM J. Optim. 17, 511–525 (2006)

  50. 50.

    Casey, M.S., Sen, S.: The scenario generation algorithm for multistage stochastic linear programming. Math. Oper. Res. 30(3), 615–631 (2005)

  51. 51.

    Kuhn, D., Parpas, P., Rustem, B.: Threshold accepting approach to improve bound-based approximations for portfolio optimization. In: Kontoghiorghes, E., Rustem, B., Winker, P. (eds.) Computational Methods in Financial Engineering, pp. 3–26. Springer, Berlin (2008)

  52. 52.

    Kuhn, D., Parpas, P., Rustem, B.: Bound-based decision rules in multistage stochastic programming. Kybernetika 44(2), 134–150 (2008)

Download references

Author information

Correspondence to D. Kuhn.

Additional information

Communicated by D.G. Luenberger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuhn, D. Convergent Bounds for Stochastic Programs with Expected Value Constraints. J Optim Theory Appl 141, 597–618 (2009). https://doi.org/10.1007/s10957-008-9476-1

Download citation

Keywords

  • Stochastic programming
  • Approximation
  • Bounds
  • Expected value constraints
  • Integrated chance constraints