An Algorithm for the Global Optimization of a Class of Continuous Minimax Problems

  • P. Parpas
  • B. Rustem


We propose an algorithm for the global optimization of continuous minimax problems involving polynomials. The method can be described as a discretization approach to the well known semi-infinite formulation of the problem. We proceed by approximating the infinite number of constraints using tools and techniques from semidefinite programming. We then show that, under appropriate conditions, the SDP approximation converges to the globally optimal solution of the problem. We also discuss the numerical performance of the method on some test problems.


Worst case analysis Continuous minimax algorithms Semidefinite programming Global optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rustem, B., Howe, M.A.: Algorithms for Worst-case Design with Applications to Risk Management. Princeton University Press, Princeton (2001) Google Scholar
  2. 2.
    Zakovic, S., Rustem, B., Pantelides, C.: An interior point algorithm for computing saddle points of constrained continuous minimax. Ann. Oper. Res. 99, 59–78 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Rustem, B., Nguyen, Q.: An algorithm for inequality constrained discrete min–max problems. SIAM J. Optim. 8, 256–283 (1998) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Rustem, B., Zakovic, S., Parpas, P.: An interior point algorithm for continuous minimax. J. Optim. Theory Appl. 136, 87–103 (2008) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Blankenship, J.W., Falk, J.E.: Infinitely constrained optimization problems. J. Optim. Theory Appl. 19, 261–281 (1976) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Demyanov, V.F., Malozemov, V.N.: Introduction to Minimax. Wiley, New York (1974) Google Scholar
  7. 7.
    Stein, O., Still, G.: Solving semi–infinite optimization problems with interior point techniques. SIAM J. Control Optim. 42, 769–788 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Zakovic, S., Rustem, B.: Semi–infinite programming and applications to minimax problems. Ann. Oper. Res. 124, 81–110 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2000/2001) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. Ser. B 96(2), 293–320 (2003). Algebraic and geometric methods in discrete optimization zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Prestel, A., Delzell, C.N.: Positive Polynomials. Springer Monographs in Mathematics. Springer, Berlin (2001). From Hilbert’s 17th problem to real algebra Google Scholar
  12. 12.
    Schweighofer, M.: Optimization of polynomials on compact semialgebraic sets. SIAM J. Optim. 15(3), 805–825 (2005) (electronic) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. In: Real Algebraic Geometry and Ordered Structures, Baton Rouge, LA, 1996. Contemp. Math., vol. 253, pp. 251–272. Am. Math. Soc., Providence (2000) Google Scholar
  14. 14.
    Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Powers, V., Wörmann, T.: An algorithm for sums of squares of real polynomials. J. Pure Appl. Algebra 127(1), 99–104 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kim, S., Kojima, M., Waki, H.: Generalized Lagrangian duals and sums of squares relaxations of sparse polynomial optimization problems. SIAM J. Optim. 15(3), 697–719 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Laurent, M.: Moment matrices and optimization over polynomials—a survey. Lecture Notes (September 2005) Google Scholar
  18. 18.
    Henrion, D., Lasserre, J.B.: Detecting global optimality and extracting solutions in gloptipoly. In Garulli, A., Henrion, D. (eds.) Positive Polynomials in Control. Lecture Notes on Control and Information Sciences Google Scholar
  19. 19.
    Hogan, W.: Point-to-set maps in mathematical programming. SIAM Rev. 15, 591–603 (1973) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zangwill, W.I., Mond, B.: Nonlinear Programming: A Unified Approach. Prentice-Hall International Series in Management. Prentice-Hall Inc., Englewood Cliffs (1969) zbMATHGoogle Scholar
  21. 21.
    Henrion, D., Lasserre, J.B.: Gloptipoly: Global optimization over polynomials with matlab and sedumi. ACM Trans. Math. Softw. 29(2) (2003) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of ComputingImperial CollegeLondonUK

Personalised recommendations