Duality and Penalization in Optimization via an Augmented Lagrangian Function with Applications

  • Y. Y. Zhou
  • X. Q. Yang


This paper aims to establish duality and exact penalization results for the primal problem of minimizing an extended real-valued function in a reflexive Banach space in terms of a valley-at-0 augmented Lagrangian function. It is shown that every weak limit point of a sequence of optimal solutions generated by the valley-at-0 augmented Lagrangian problems is a solution of the original problem. A zero duality gap property and an exact penalization representation between the primal problem and the valley-at-0 augmented Lagrangian dual problem are obtained. These results are then applied to an inequality and equality constrained optimization problem in infinite-dimensional spaces and variational problems in Sobolev spaces, respectively.


Valley-at-0 augmented Lagrangian function Zero duality gap Exact penalty function Reflexive Banach space 


  1. 1.
    Cea, J.: Lectures on Optimization-Theory and Algorithms. Springer, Berlin (1978) zbMATHGoogle Scholar
  2. 2.
    Luenberger, D.G.: Linear and Nonlinear Programming. Kluwer Academic, Berlin (1984) zbMATHGoogle Scholar
  3. 3.
    Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control Optim. 12, 268–285 (1974) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35, 183–238 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bertsekas, D.P.: Constrained Optimization and Lagrangian Multiplier Methods. Academic, New York (1982) Google Scholar
  7. 7.
    Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998) zbMATHGoogle Scholar
  8. 8.
    Huang, X.X., Yang, X.Q.: A unified augmented Lagrangian approach to duality and exact penalization. Math. Oper. Res. 28, 533–552 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Rubinov, A.M., Huang, X.X., Yang, X.Q.: The zero duality gap property and lower semicontinuity of the perturbation function. Math. Oper. Res. 27, 775–791 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Zhou, Y.Y., Yang, X.Q.: Some results about duality and exact penalization. J. Glob. Optim. 29, 497–509 (2004) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Burke, J.V.: An exact penalization viewpoint of constrained optimization. SIAM J. Control Optim. 29, 968–998 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) zbMATHGoogle Scholar
  13. 13.
    Rubinov, A.M., Glover, B.M., Yang, X.Q.: Decreasing functions with applications to penalization. SIAM J. Optim. 10, 289–313 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1, 165–174 (1976) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ito, K., Kunisch, K.: Augmented Lagrangian-SQP-method in Hilbert space and application to control in the coefficients problems. SIAM J. Optim. 6, 96–125 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Forsyth, P.A., Vetzal, K.R.: Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23, 2095–2122 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Penot, J.P.: Augmented Lagrangians, duality and growth conditions. J. Nonlinear Convex Anal. 3, 283–302 (2002) zbMATHMathSciNetGoogle Scholar
  18. 18.
    Rubinov, A.M., Yang, X.Q.: Lagrange-Type Functions in Constrained Non-convex Optimization. Kluwer Academic, Berlin (2003) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsSoochow UniversitySoochowChina
  2. 2.Department of Applied MathematicsHong Kong Polytechnic UniversityKowloonChina

Personalised recommendations