Advertisement

Journal of Optimization Theory and Applications

, Volume 140, Issue 2, pp 287–299 | Cite as

Robust Stabilization of Linear Systems with Delayed State and Control

  • P. T. Nam
  • V. N. PhatEmail author
Article

Abstract

Robust stabilization of linear systems with delays on both the state and control input is studied in this paper. Using an improved Lyapunov-Krasovskii functional, we establish new criteria that ensure the robust stability of the closed-loop system with memoryless state feedback controls. The generalized conditions are derived in terms of linear matrix inequalities (LMIs), allowing us to compute simultaneously the two bounds that characterize the exponential stability rate of the solution and can be easily solved by numerical algorithms.

Keywords

Stabilization Robust control Delayed state and control Uncertainties Lyapunov functional Linear matrix inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chukwu, E.N.: Stability and Time-optimal Control of Hereditary Systems. Academic Press, Boston (1992) Google Scholar
  2. 2.
    Kolmanovskii, V.B., Shaikhet, L.E.: Control of Systems with Aftereffect. Transaction of Math. Monographs, vol. 157. Am. Math. Soc., Providence (1996) Google Scholar
  3. 3.
    Artstein, Z.: Linear systems with delayed controls: a reduction. IEEE Trans. Automat Control 27, 869–879 (1982) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Corless, M., Leitmann, G.: Bounded controllers for robust exponential convergence. J. Optim. Theory Appl. 76, 1–12 (1993) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Nguang, S.K.: Robust H control of a class of nonlinear systems with delayed state and control: a LMI approach. In: 37th IEEE CDC 98, Tampa, pp. 2384–2398 (1998) Google Scholar
  6. 6.
    Phat, V.N., Niamsup, P.: Stabilization of linear nonautonomous systems with norm-bounded controls. J. Theory Optim. Appl. 131, 135–149 (2006) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Phat, V.N.: Global stabilization for linear continuous time-varying systems. Appl. Math. Comput. 175, 1730–1743 (2006) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Phohomsiri, P., Udwadia, F.E., von Bremen, H.: Time-delayed positive velocity feedback control design for active control of structures. J. Eng. Mech. 132, 690–703 (2006) CrossRefGoogle Scholar
  9. 9.
    Udwadia, F.E., Kumar, R.: Time-delayed control of classically damped structural systems. Int. J. Control 60, 687–713 (1994) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Udwadia, F.E., von Bremen, H., Phohomsiri, P.: Time-delayed control design for active control of structures: principles and applications. Struct. Control Health Monit. 14, 27–61 (2007) CrossRefGoogle Scholar
  11. 11.
    Udwadia, F.E., von Bremen, H., Kumar, R., Mohamed, H.: Time Delayed Control of Structural Systems. Stability Control Theory Methods Applications, vol. 22. Chapman & Hall/CRC, Boca Raton (2004) Google Scholar
  12. 12.
    Richard, J.P.: Time-delay systems: an overview of some resent advances and open problems. Automatica 39, 1667–1694 (2003) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Lee, J.H., Moon, Y.S., Kwon, W.H.: Robust H controller for state and input delayed systems with structured uncertainties. In: 35th IEEE CDC, Kobe, pp. 2092–2096 (1996) Google Scholar
  14. 14.
    Zhang, X.M., Min, W., She, J.H., He, Y.: Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica 41, 1405–1412 (2005) CrossRefGoogle Scholar
  15. 15.
    Chen, W.H., Zheng, W.X.: On improved robust stabilization of uncertain systems with unknown input delay. Automatica 42, 1067–1072 (2006) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kwon, W.H., Pearson, A.E.: Feedback stabilization of linear systems with delayed control. IEEE Trans. Automat Control 25, 266–269 (1980) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Kwon, O.M., Park, J.H.: Robust stabilization criterion for uncertain systems with delay in control input. Appl. Math. Comput. 172, 1067–1077 (2006) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Moon, Y.S., Park, P.G., Kwon, W.H.: Robust stabilization of uncertain input delayed systems using reduction method. Automatica 37, 307–312 (2001) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Yue, D.: Robust stabilization of uncertain systems with unknown input delay. Automatica 40, 331–336 (2004) CrossRefGoogle Scholar
  20. 20.
    Yue, D., Han, Q.L.: Delayed feedback control of uncertain systems with time-varying input delay. Automatica 41, 33–240 (2005) CrossRefGoogle Scholar
  21. 21.
    Boyd, S., Ghaoui, El., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities and Control Theory. SIAM Studies in Applied Mathematics, vol. 15. SIAM, Philadelphia (1994) Google Scholar
  22. 22.
    Gahinet, P., Nemirovski, A., Laub, A., Chilali, M.: LMI Control Toolbox User’s Guide. The Mathworks, Natick (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsQui Nhon UniversityQui Nhon CityVietnam
  2. 2.Institute of MathematicsHanoiVietnam

Personalised recommendations