Journal of Optimization Theory and Applications

, Volume 135, Issue 1, pp 117–133 | Cite as

New Results on Second-Order Optimality Conditions in Vector Optimization Problems

Article

Abstract

In this paper, we study second-order optimality conditions for multiobjective optimization problems. By means of different second-order tangent sets, various new second-order necessary optimality conditions are obtained in both scalar and vector optimization. As special cases, we obtain several results found in the literature (see reference list). We present also second-order sufficient optimality conditions so that there is only a very small gap with the necessary optimality conditions.

Keywords

Multiobjective optimization Efficient solutions Constraint qualifications Second-order tangent sets Asymptotic second-order cones Second-order necessary and sufficient conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lin, J.G.: Maximal vectors and multiobjective optimization. J. Optim. Theory Appl. 18, 41–64 (1976) MATHCrossRefGoogle Scholar
  2. 2.
    Singh, C.: Optimality conditions in multiobjective differentiable programming. J. Optim. Theory Appl. 53, 115–123 (1987) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Aghezzaf, B.: Second-order necessary conditions of the Kuhn–Tucker type in multiobjective programming problems. Control Cybern. 28, 213–224 (1999) MATHMathSciNetGoogle Scholar
  4. 4.
    Aghezzaf, B., Hachimi, M.: Second-order optimality conditions in multiobjective optimization problems. J. Optim. Theory Appl. 102, 37–50 (1999) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bigi, G., Castellani, M.: Second-order optimality conditions for differentiable multiobjective problems. RAIRO Oper. Res. 34, 411–426 (2000) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bolintinéanu, S., El Maghri, M.: Second-order efficiency conditions and sensitivity of efficient points. J. Optim. Theory Appl. 98, 569–592 (1998) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cambini, A., Komlósi, S., Martein, L.: Recent developments in second-order necessary optimality conditions. In: Crouzeix, J.P. et al. (eds.) Generalized Convexity, Generalized Monoticity, pp. 347–356. Kluwer Academic, Amsterdam (1998) Google Scholar
  8. 8.
    Cambini, R.: Second-order optimality conditions in multiobjective programming. Optimization 44, 139–160 (1998) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hachimi, M.: Conditions d’Optimalité et Dualité en Programmation Mathématique Multiobjectif. Thèse de Doctorat, Université Hassan II–Aïn Chock, Maroc (2000) Google Scholar
  10. 10.
    Ben-Tal, A.: Second-order and related extremality conditions in nonlinear programming. J. Optim. Theory Appl. 31, 143–165 (1980) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cambini, A., Martein, L., Vlach, M.: Second-order tangent sets and optimality conditions. Research Report, Japan Advanced Studies of Science and Technology, Hokuriku, Japan (1997) Google Scholar
  12. 12.
    Kawasaki, H.: Second-order necessary conditions of the kuhn-tucker type under new constraint qualification. J. Optim. Theory Appl. 57, 253–264 (1988) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Wang, S.: Second-order necessary and sufficient conditions in multiobjective programming. Numer. Funct. Anal. Optim. 12, 237–252 (1991) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Ben-Tal, A., Zowe, J.: A unified theory of first and second-order conditions for extremum problems in topological vector spaces. Math. Program. Study 19, 39–76 (1982) MathSciNetGoogle Scholar
  15. 15.
    Penot, J.P.: Optimality conditions in mathematical programming and composite optimization. Math. Program. 67, 225–245 (1994) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Penot, J.P.: Second-order conditions for minimization problems with constraints. SIAM J. Control Optim. 37, 303–318 (1998) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989) Google Scholar
  18. 18.
    Yu, P.L.: Multiple-Criteria Decision Making: Concepts, Techniques and Extensions. Plenum, New York (1985) MATHGoogle Scholar
  19. 19.
    Aghezzaf, B., Hachimi, M.: On a gap between multiobjective optimization and scalar optimization. J. Optim. Theory Appl. 109, 431–435 (2001) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, Orlando (1985) MATHGoogle Scholar
  21. 21.
    Mangasarian, O.L.: Nonlinear Programming. McGraw Hill, New York (1969) MATHGoogle Scholar
  22. 22.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 2nd edn. Wiley, New York (1993) MATHGoogle Scholar
  23. 23.
    Maeda, T.: Constraint qualification in multiobjective optimization problems: differentiable case. J. Optim. Theory Appl. 80, 483–500 (1994) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Abadie, J.: On the Kuhn–Tucker theorem. In: Abadie, J. (ed.) Nonlinear Programming, pp. 21–36. North-Holland, Amsterdam (1967) Google Scholar
  25. 25.
    Guignard, M.: Generalized Kuhn–Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Control 7, 232–241 (1987) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Faculté des Sciences Juridiques Economiques et SocialesUniversié Ibn ZohrAgadirMorocco
  2. 2.Département de Mathématiques et d’Informatique, Faculté des SciencesUniversité Hassan II Aïn chockCasablancaMorocco

Personalised recommendations