Lagrangian Duality in Set-Valued Optimization

Article

Abstract

In this paper, we study optimization problems where the objective function and the binding constraints are set-valued maps and the solutions are defined by means of set-relations among all the images sets (Kuroiwa, D. in Takahashi, W., Tanaka, T. (eds.) Nonlinear analysis and convex analysis, pp. 221–228, 1999). We introduce a new dual problem, establish some duality theorems and obtain a Lagrangian multiplier rule of nonlinear type under convexity assumptions. A necessary condition and a sufficient condition for the existence of saddle points are given.

Keywords

Set-valued maps Set optimization Lagrangian duality Saddle points 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuroiwa, D.: Some duality theorems of set-valued optimization with natural criteria. In: Takahashi, W., Tanaka, T. (eds.) Nonlinear Analysis and Convex Analysis, pp. 221–228. World Scientific, River Edge (1999) Google Scholar
  2. 2.
    Corley, H.W.: Existence and Lagrangian duality for maximization of set-valued functions. J. Optim. Theory Appl. 54, 489–501 (1987) MATHCrossRefGoogle Scholar
  3. 3.
    Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989) Google Scholar
  4. 4.
    Li, Z.F., Chen, G.Y.: Lagrangian multipliers, saddle points and duality in vector optimization of set-valued maps. J. Math. Anal. Appl. 215, 297–316 (1997) MATHCrossRefGoogle Scholar
  5. 5.
    Truong, X.D.H.: Cones admitting strictly positive functionals and scalarization of some vector optimization problems. J. Optim. Theory Appl. 93, 355–372 (1997) MATHCrossRefGoogle Scholar
  6. 6.
    Sach, P.H.: Nearly subconvexlike set-valued maps and vector optimization problems. J. Optim. Theory Appl. 119, 335–356 (2003) MATHCrossRefGoogle Scholar
  7. 7.
    Li, S.J., Yang, X.Q., Chen, G.Y.: Nonconvex vector optimization of set-valued mappings. J. Math. Anal. Appl. 283, 337–350 (2003) MATHCrossRefGoogle Scholar
  8. 8.
    Song, W.: Duality for vector optimization of set-valued functions. J. Math. Anal. Appl. 201, 212–225 (1996) MATHCrossRefGoogle Scholar
  9. 9.
    Kuroiwa, D.: Existence theorems of set optimization with set-valued maps. J. Inf. Optim. Sci. 24, 73–84 (2003) MATHGoogle Scholar
  10. 10.
    Kuroiwa, D.: Existence of efficient points of set optimization with weighted criteria. J. Nonlinear Convex Anal. 4, 117–123 (2003) MATHGoogle Scholar
  11. 11.
    Ha, T.X.D.: Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl. 124, 187–206 (2005) MATHCrossRefGoogle Scholar
  12. 12.
    Alonso, M., Rodríguez-Marín, L.: Set relations and optimality conditions in set-valued maps. Nonlinear Anal. 63, 1167–1179 (2005) MATHCrossRefGoogle Scholar
  13. 13.
    Hernández, E., Rodríguez-Marín, L.: Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl. 325, 1–18 (2007) MATHCrossRefGoogle Scholar
  14. 14.
    Kuroiwa, D.: On set-valued optimization. Nonlinear Anal. 47, 1395–1400 (2001) MATHCrossRefGoogle Scholar
  15. 15.
    Jahn, J.: Vector Optimization. Theory, Applications, and Extensions. Springer, Berlin (2004) MATHGoogle Scholar
  16. 16.
    Kuroiwa, D., Tanaka, T., Ha, T.X.D.: On cone convexity of set-valued maps. Nonlinear Anal. 30, 1487–1496 (1997) MATHCrossRefGoogle Scholar
  17. 17.
    Löhne, A.: Optimization with set relations: conjugate duality. Optimization 54, 265–282 (2005) MATHCrossRefGoogle Scholar
  18. 18.
    Hamel, A., Löhne, A.: Minimal set theorems. Report No. 11, University of Halle-Wittenberg, Institute of Optimization and Stochastics (2002) Google Scholar
  19. 19.
    Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of multiobjective optimization. Mathematics in Science and Engineering, vol. 176. Academic Press, Orlando (1985) MATHGoogle Scholar
  20. 20.
    Corley, H.W.: Duality theory for maximization with respect to cones. J. Math. Anal. Appl. 84, 560–568 (1981) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Departamento de Matemática AplicadaUniversidad Nacional de Educación a DistanciaMadridSpain

Personalised recommendations