Advertisement

Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem

  • A. Tada
  • W. Takahashi
Article

Abstract

In this paper, we introduce two iterative sequences for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of an equilibrium problem in a Hilbert space. Then, we show that one of the sequences converges strongly and the other converges weakly.

Keywords

Equilibrium problems Nonexpansive mappings Firmly nonexpansive mappings Weak and strong convergence Monotonicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Takahashi, W.: Convex Analysis and Approximation of Fixed Points. Yokohama Publishers, Yokohama (2000) Google Scholar
  2. 2.
    Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000) zbMATHGoogle Scholar
  3. 3.
    Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Flam, S.D., Antipin, A.S.: Equilibrium programming using proximal-like algorithms. Math. Program. 78, 29–41 (1997) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Moudafi, A., Thera, M.: Proximal and dynamical approaches to equilibrium problems. In: Lecture Notes in Economics and Mathematical Systems, vol. 477, pp. 187–201. Springer, New York (1999) Google Scholar
  6. 6.
    Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005) zbMATHMathSciNetGoogle Scholar
  7. 7.
    Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953) zbMATHCrossRefGoogle Scholar
  8. 8.
    Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 279, 372–379 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 113, 417–428 (2003) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Opial, Z.: Weak convergence of the sequence of successive approximation for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Mathematical and Computing SciencesTokyo Institute of TechnologyTokyoJapan

Personalised recommendations