Advertisement

Moreau–Rockafellar Theorems for Nonconvex Set-Valued Maps

  • P. H. SachEmail author
Article

Abstract

In this paper, we introduce the notion of (Benson) proper subgradient of a set-valued map and prove that, for some class of nonconvex set-valued maps, a proper subgradient of the sum of two set-valued maps can be expressed as the sum of two proper subgradients of these maps. This property is also established for weak subgradients. A result in Ref. [Lin, L.J.: J. Math. Anal. Appl. 186, 30–51 (1994)], obtained under some convexity assumption, is included as a special case of the corresponding result of this paper.

Keywords

Moreau–Rockafellar theorem Benson proper subgradients Set-valued maps Generalized convexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lin, L.J.: Optimization of set-valued functions. J. Math. Anal. Appl. 186, 30–51 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) zbMATHGoogle Scholar
  3. 3.
    Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. Nauka, Moscow (1974) (in Russian) Google Scholar
  4. 4.
    Song, W.: Duality in set-valued optimization. Diss. Math. 375, 1–67 (1998) Google Scholar
  5. 5.
    Jeyakumar, V., Gwinner, J.: Inequality systems and optimization. J. Math. Anal. Appl. 159, 51–57 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Huang, Y.W.: Optimality conditions for vector optimization with set-valued maps. Bull. Aust. Math. Soc. 66, 317–330 (2002) zbMATHCrossRefGoogle Scholar
  7. 7.
    Illés, T., Kassay, G.: Theorems of the alternative and optimality conditions for convexlike and general convexlike programming. J. Optim. Theory Appl. 101, 243–257 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Aleman, A.: On some generalizations of convex sets and convex functions. Math. Rev. Anal. Numér. Théorie Approx. 14, 1–6 (1985) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Brecker, W.W., Kassay, G.: A systematization of convexity concepts for sets and functions. J. Convex Anal. 4, 109–127 (1997) MathSciNetGoogle Scholar
  10. 10.
    Chen, G.Y., Rong, W.D.: Characterization of the Benson proper efficiency for nonconvex vector optimization. J. Optim. Theory Appl. 98, 365–384 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. USA 39, 42–47 (1953) zbMATHCrossRefGoogle Scholar
  12. 12.
    Jeyakumar, V.: Convexlike alternative theorems and mathematical programming. Optimization 16, 643–652 (1985) zbMATHMathSciNetGoogle Scholar
  13. 13.
    Li, Z.F.: Benson proper efficiency in the vector optimization of set-valued maps. J. Optim. Theory Appl. 98, 623–649 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Li, Z.: A theorem of the alternative and its application to the optimization of set-valued maps. J. Optim. Theory Appl. 100, 365–375 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Li, Z.F., Wang, S.Y.: Lagrange multipliers and saddle points in multiobjective programming. J. Optim. Theory Appl. 83, 63–81 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Paeck, S.: Convexlike and concavelike conditions in alternative, minimax, and minimization theorems. J. Optim. Theory Appl. 14, 317–332 (1992) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Sach, P.H.: Nearly subconvexlike set-valued maps and vector optimization problems. J. Optim. Theory Appl. 119, 335–356 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sach, P.H.: New generalized convexity notion for set-valued maps and application to vector optimization. J. Optim. Theory Appl. 125, 157–179 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Yang, X.M.: Alternative theorems and optimality conditions with weakened convexity. Opsearch 29, 125–135 (1992) zbMATHGoogle Scholar
  20. 20.
    Yang, X.M., Li, D., Wang, S.Y.: Near-subconvexlikeness in vector optimization with set-valued functions. J. Optim. Theory Appl. 110, 413–427 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Yang, X.M., Yang, X.Q., Chen, G.Y.: Theorems of the alternative and optimization with set-valued maps. J. Optim. Theory Appl. 107, 627–640 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Dauer, J.P., Saleh, O.A.: A characterization of proper minimal points as solutions of sublinear optimization problems. J. Math. Anal. Appl. 178, 227–246 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Holmes, R.B.: Geometric Functional Analysis and its Applications. Springer, New York (1975) zbMATHGoogle Scholar
  24. 24.
    Tanino, T., Sawaragi, Y.: Conjugate maps and duality in multiobjective optimization. J. Optim. Theory Appl. 31, 473–499 (1980) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of MathematicsHanoiVietnam

Personalised recommendations