Advertisement

Optimality and Duality for a Class of Nondifferentiable Multiobjective Fractional Programming Problems

  • D. S. Kim
  • S. J. Kim
  • M. H. Kim
Article

Abstract

In this paper, we consider a class of nondifferentiable multiobjective fractional programs in which each component of the objective function contains a term involving the support function of a compact convex set. We establish necessary and sufficient optimality conditions and duality results for weakly efficient solutions of nondifferentiable multiobjective fractional programming problems.

Keywords

Nondifferentiable programming multiobjective fractional programming optimality conditions duality theorems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BECTOR, C. R., CHANDRA, S., and HUSAIN, I., Optimality Conditions and Subdifferentiable Multiobjective Fractional Programming, Journal of Optimization Theory and Applications, Vol. 79, pp. 105–125, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    HANSON, M. A., On Sufficiency of the Kuhn-Tucker Conditions, Journal of Mathematical Analysis and Applications, Vol. 80, pp. 544–550, 1981.CrossRefMathSciNetGoogle Scholar
  3. 3.
    JEYAKUMAR, V., Equivalence of Saddle-Points and Optima and Duality for a Class of Nonsmooth Nonconvex Problems, Journal of Mathematical Analysis and Applications, Vol. 130, pp. 334–343, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    JEYKUMAR, V., and MOND, B., On Generalized Convex Mathematical Programming, Journal of the Australian Mathematical Society, Vol. 34B, pp. 43–53, 1992.Google Scholar
  5. 5.
    KUK, H., LEE, G. M., and KIM, D. S., Nonsmooth Multiobjective Programs with (V,ρ)-Invexity, Indian Journal of Pure and Applied Mathematics, Vol. 29, pp. 405–412, 1998.zbMATHMathSciNetGoogle Scholar
  6. 6.
    LIU, J. C., Optimality and Duality for Multiobjective Fractional Programming Involving Nonsmooth Pseudoinvex Functions, Optimization, Vol. 37, pp. 27–39, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    LIU, J. C., Optimality and Duality for Multiobjective Fractional Programming Involving Nonsmooth (F, ρ)-Convex Pseudoinvex Functions, Optimization, Vol. 36, pp. 333–346, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    LIANG, Z., HUANG, H., and PARDALOS, P. M., Optimality Conditions and Duality for a Class of Nonlinear Fractional Programming Problems, Journal of Optimization Theory and Applications, Vol. 110, pp. 611–619, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    LIANG, Z., HUANG, H., and PARDALOS, P. M., Efficiency Conditions and Duality for a Class of Multiobjective Fractional Programming Problems, Journal of Global Optimization, Vol. 27, pp. 444–471, 2003.CrossRefMathSciNetGoogle Scholar
  10. 10.
    PREDA, V., On Efficiency and Duality for Multiobjective Programs, Journal of Mathematical Analysis and Applications, Vol. 166, pp. 356–377, 1992.CrossRefMathSciNetGoogle Scholar
  11. 11.
    VENKATESHWARA REDDY L., and MUKHERJEE, R. N., Some Results on Mathematical Programming with Generalized Ratio Invexity, Journal of Mathematical Analysis and Applications, Vol. 240, pp. 299–310, 1999.CrossRefMathSciNetGoogle Scholar
  12. 12.
    MOND, B., and SCHECHTER, M., Nondifferentiable Symmetric Duality, Bulletine of the Australian Mathematical Society, Vol. 53, pp. 177–187, 1996.Google Scholar
  13. 13.
    YANG, X. M., TEO, K. L., and YANG, X. Q., Duality for a Class of Nondifferentiable Multiobjective Programming Problems, Journal of Mathematical Analysis and Applications, Vol. 252, pp. 999–1005, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    MISHRA, S. K., and MUKHERJEE, R. N., On Generalized Convex Multiobjective Nonsmooth Programming, Journal of the Australian Mathematical Society, Vol. 38B, pp. 140–148, 1996.MathSciNetGoogle Scholar
  15. 15.
    KUK, H., LEE, G. M., and TANINO, T., Optimality and Duality for Nonsmooth Multiobjective Fractional Programming with Generalized Invexity, Journal of Mathematical Analysis and Applications, Vol. 262, pp. 365–375, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    MANGASARIAN, O. L., Nonlinear Programming, McGraw-Hill, New York, NY, pp. 65–66, 1969.zbMATHGoogle Scholar
  17. 17.
    KHAN, Z. A., and HANSON, M. A., On Ratio Invexity in Mathematical Programming, Journal of Mathematical Analysis and Applications, Vol. 205, pp. 330–336, 1997.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • D. S. Kim
    • 1
  • S. J. Kim
    • 1
  • M. H. Kim
    • 1
  1. 1.Department of Applied MathematicsPukyong National UniversityPusanKorea

Personalised recommendations