Journal of Optimization Theory and Applications

, Volume 128, Issue 1, pp 103–117 | Cite as

LMI Optimization Approach to Observer-Based Controller Design of Uncertain Time-Delay Systems via Delayed Feedback

  • O. M. Kwon
  • J. H. Park
  • S. M. Lee
  • S. C. Won


In this paper, we propose a design method of an observer-based controller for uncertain time-delay systems by delayed feedback. Based on the Lyapunov method, an LMI (linear matrix inequality) criterion is derived to design an observer-based controller which makes the system stable. A numerical example is included to illustrate the design procedure.


LMI optimization time-delay systems observer-based control delayed feedback 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xu, S., Lu, J., Zhou, S., Yang, C. 2004Design of Observers for a Class of Discrete-Time Uncertain Nonlinear Systems with Time DelayJournal of the Franklin Institute.341295308CrossRefMathSciNetGoogle Scholar
  2. 2.
    Won, S., Park, J.H. 1999Design of Observer-Based Controller for Perturbed Time-Delay SystemsJSME International Journal.42129132Google Scholar
  3. 3.
    Park, J.H. 2004On the Design of Observer-Based Controller of Linear Neutral Delay-Differential SystemsApplied Mathematics and Computation.150195202MATHMathSciNetGoogle Scholar
  4. 4.
    Sun, Y.J. 2002Global Stabilizability of Uncertain Systems with Time-Varying Delays via Dynamic Observer-Based Output FeedbackLinear Algebra and Its Applications.35391105CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Ivănescu, D., Dion, J.M., Dugard, L., Niculescu, S.I. 2000Dynamical Compensation for Time-Delay Systems: An LMI ApproachInternational Journal of Robust and Nonlinear Control.10611628MathSciNetGoogle Scholar
  6. 6.
    Azuma, T., Ikeda, K., Kondo, T., Uchida, K. 2002Memory State Feedback Control Synthesis for Linear Systems with Time Delay via a Finite Number of Linear Matrix InequalitiesComputers and Electrical Engineering.28217228Google Scholar
  7. 7.
    Moon, Y.S., Park, P.G., Kwon, W.H. 2001Robust Stabilization of Uncertain Input-Delayed Systems Using Reduction MethodAutomatica.37307312CrossRefMathSciNetGoogle Scholar
  8. 8.
    Yue, D., Won, S., Kwon, O. 2003Delay-Dependent Stability of Neutral Systems with Time Delay: An LMI ApproachIEE Proceedings-Control Theory and Applications.1502328Google Scholar
  9. 9.
    Boyd S., Ghaoui LE., Feron E., Balakrishnan V. Linear Matrix Inequalities in Systems and Control Theory. Studies in Applied Mathematics, SIAM. Philadelphia, Pennsylvania, Vol. 15, 1994.Google Scholar
  10. 10.
    Gu K. (2000). An Integral Inequality in the Stability Problem of Time-Delay Systems, Proceedings of 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 2805–2810, 2000.Google Scholar
  11. 11.
    Yue, D., Won, S. 2001Delay-Dependent Robust Stability of Stochastic Systems with Time Delay and Nonlinear UncertaintiesElectronics Letters.37992993CrossRefGoogle Scholar
  12. 12.
    Hale, J., Verduyn-Lunel, S.M. 1993Introduction to Functional Differential EquationsSpringer VerlagNew York, NYGoogle Scholar
  13. 13.
    Gahinet, P., Nemirovski, A., Laub, A., Chilali, M. 1995LMI Control Toolbox User’s GuideMathworksNatickMassachusettsGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • O. M. Kwon
    • 1
  • J. H. Park
    • 2
  • S. M. Lee
    • 3
  • S. C. Won
    • 4
  1. 1.Department of Intelligent Control ResearchMechatronics Center, Samsung Heavy IndustriesDaejeonRepublic of Korea
  2. 2.Department of Electrical EngineeringYeungnam UniversityKyongsanRepublic of Korea
  3. 3.Department of Electrical and Electronic EngineeringPOSTECHPohangRepublic of Korea
  4. 4.Department of Electrical and Electronic EngineeringPOSTECHPohangRepublic of Korea

Personalised recommendations