Journal of Optimization Theory and Applications

, Volume 127, Issue 2, pp 329–345 | Cite as

Separable Augmented Lagrangian Algorithm with Multidimensional Scaling for Monotropic Programming

  • O. M. Guèye
  • J. -P. Dussault
  • P. Mahey


We analyze a new decomposition approach for convex structured programs based on augmented Lagrangian functions with multiple scaling parameters. We obtain global convergence results with weak hypotheses. Numerical results are presented on a class of multicommodity flow problems; empirical choices of the scaling parameters updates are discussed.


Augmented Lagrangians monotropic programming multicommodity flows decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hamdi, A., Mahey, P., and Dussault, J. P., A New Decomposition Method in Nonconvex Progamming via a Separable Augmented Lagrangian, Recent Advances in Optimization, Edited by P. Gritzmann, R. Horst, E. Sachs, and R. Tishchatschke, Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin, Germany, Vol. 452, pp. 90–104, 1997.Google Scholar
  2. 2.
    Mahey, P., Oualibouch, S., Pham, D. T. 1995Proximal Decomposition on the Graph of a Maximal Monotone OperatorSIAM Journal on Optimization5225236CrossRefGoogle Scholar
  3. 3.
    Fukushima, M. 1992Application of the Alternating Directions Method of Multipliers to Separable Convex Programming ProblemsComputational Optimization and Applications183111CrossRefGoogle Scholar
  4. 4.
    Eckstein, J. 1989Splitting Methods for Monotone Operators with Applications to Parallel OptimizationDepartment of Civil Engineering Massachusetts, Institute of TechnologyCambridge, MassachusettsPhD ThesisGoogle Scholar
  5. 5.
    Mahey, P., Dussault, J. P., and Hamdi, A., Adaptative Scaling and Convergence Rates of a Separable Augmented Lagrangian Algorithm, Recent Advances in Optimization, Edited by V. H. Nguyen, J. J. Strodiot, and P. Tossings, Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin, Germany, Vol. 481, pp. 278–287, 2000.Google Scholar
  6. 6.
    Ouorou, A., Mahey, P., Vial, J. P. 2000A Survey of Algorithms for Convex Multicommodity Flow ProblemsManagement Science46126147CrossRefGoogle Scholar
  7. 7.
    Ouorou, A. 1995Décomposition Proximale des Problèmes de Multiflot à Critère Convexe: Application aux Problèmes de Routage dans les Réseaux de CommunicationUniversité Blaise-Pascal Clermont FerrandFrancePhD ThesisGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • O. M. Guèye
    • 1
  • J. -P. Dussault
    • 1
  • P. Mahey
    • 2
  1. 1.Département, d’Informatique, Faculté des SciencesUniversité de SherbrookeSherbrookeCanada
  2. 2.Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes, CNRSUniversité Blaise-PascalClermont-FerrandFrance

Personalised recommendations