Advertisement

Journal of Optimization Theory and Applications

, Volume 124, Issue 1, pp 187–206 | Cite as

Some Variants of the Ekeland Variational Principle for a Set-Valued Map

  • T. X. D. Ha
Article

Abstract

This paper deals with the Ekeland variational principle (EVP) for a set-valued map F with values in a vector space E. Using the concept of cone extension and the Mordukhovich coderivative, we formulate some variants of the EVP for F under various continuity assumptions. We investigate also the stability of a set-valued EVP. Our approach is motivated by the set approach proposed by Kuroiwa for minimizing set-valued maps.

Keywords

Ekeland variational principle set-valued maps Mordukhovich coderivatives stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ekeland, I. 1974On the Variational PrincipleJournal of Mathematical Analysis and Applications47324353Google Scholar
  2. Attouch, H., Riahi, H. 1993Stability Results for Ekeland’s ε-Variational Principle and Cone Extremal SolutionsMathematics of Operation Research18173201Google Scholar
  3. Chen, G.Y., Huang, X.X. 1998Ekeland’s ε-Variational Principle for Set-Valued MappingMathematical Methods of Operations Research48181186Google Scholar
  4. Chen, G.Y., Huang, X.X., Hou, S.H. 2000A General Approximate Variational Principle for Set-Valued MapsJournal of Optimization Theory and Applications106151164Google Scholar
  5. Huang, X.X. 2001New Stability Results for Ekeland’s ε-Variational Principle for Vector-Valued and Set-Valued MapsJournal of Mathematical Analysis and Applications2621223Google Scholar
  6. Huang, X.X. 2002Stability Results for Ekeland’s ε-Variational Principle for Set-Valued MappingsOptimization513145Google Scholar
  7. Kuroiwa, D., Some Duality Theorems for Set-Valued Optimization with Natural Criteria, Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis, World Scientific, Singapore, Republic of Singapore, pp. 221–228, 2001.Google Scholar
  8. Kuroiwa, D. 2001On Set-Valued OptimizationNonlinear Analysis4713951400Google Scholar
  9. Corley, H.W. 1988Existence and Lagrangian Duality for Maximizations of Set-Valued MapsJournal of Optimization Theory and Applications54489501Google Scholar
  10. Jahn, J. 1986Mathematical Vector Optimization in Partially-Ordered Linear SpacesVerlag Peter LangFrankfurt, GermanyGoogle Scholar
  11. Aubin, J.P., Ekeland, I. 1984Applied Nonlinear AnalysisJohn Wiley and SonsNew York, NYGoogle Scholar
  12. Ferro, F. 1996An Optimization Result for Set-Valued Mappings and a Stability Property in Vector Problems with ConstraintsJournal of Optimization Theory and Applications906377Google Scholar
  13. Fan, K., A Minimax Inequality and Applications, Inequalities III, Proceeding of the 3rd Symposium Dedicated to the Memory of Theodore S. Motzkin, University of California, Los Angeles, California 1969; Academic Press, New York, NY, pp. 103–113, 1972.Google Scholar
  14. Luc, D.T. 1989Theory of Vector OptimizationSpringer VerlagNew York, NYGoogle Scholar
  15. Dancs, S., Hegedus, M., Medvegyev, P. 1983A General Ordering and Fixed-Point Principle in Complete Metric SpaceActa Scientiarum Mathematicarum (Szeged)46381388Google Scholar
  16. Krasnoselskii, M.A. 1964Positive Solutions of Operator EquationsNoordhoffGroningen, HollandGoogle Scholar
  17. Mordukhovich, B.S., Shao, Y. 1996Nonsmooth Sequential Analysis in Asplund SpacesTransactions of the American Mathematical Society34812351280Google Scholar
  18. Mordukhovich, B.S., Shao, Y. 2000On Variational Characterizations of Asplund SpacesCanadian Mathematical Society, Conference Proceedings27245254Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • T. X. D. Ha
    • 1
  1. 1.Hanoi Institute of MathematicsHanoiVietnam

Personalised recommendations