Advertisement

Necessary Conditions for Impulsive Nonlinear Optimal Control Problems without a priori Normality Assumptions

  • A. Arutyunov
  • V. Dykhta
  • F. Lobo Pereira
Article

Abstract

First-order and second-order necessary conditions of optimality for an impulsive control problem that remain informative for abnormal control processes are presented and derived. One of the main features of these conditions is that no a priori normality assumptions are required. This feature follows from the fact that these conditions rely on an extremal principle which is proved for an abstract minimization problem with equality constraints, inequality constraints, and constraints given by an inclusion in a convex cone. Two simple examples illustrate the power of the main result.

Keywords

Optimal impulsive control extremal principle second order optimality conditions abnormality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller, B. 1982The Optimality Conditions in a Problem of Control of a System That Can Be Described with a Differential Equation with MeasureAvtomatika i Telemekhanika6752761Google Scholar
  2. Zavalischin, S., Sesekin, A. 1991Impulsive Processes: Models and ApplicationsNaukaMoscow, RussiaGoogle Scholar
  3. Sarychev, A. 1991Optimization of Generalized Controls in a Nonlinear Time-Optimal ProblemDifferential Equations27539550Google Scholar
  4. Dykhta, V., Samsonyuk, O. N. 2000Optimal Impulse Control with ApplicationsNaukaMoscow, RussiaGoogle Scholar
  5. Marec, J. 1979Optimal Space TrajectoriesElsevierAmesterdam, HollandGoogle Scholar
  6. Lawden, D. 1663Optimal Trajectories for Space NavigationButterworthLondon, EnglandGoogle Scholar
  7. Brogliato, B. 1996Nonsmooth Impact Mechanics: Models, Dynamics, and Control, Lecture Notes in Control and Information SciencesSpringer VerlagNew York, NYVol. 220Google Scholar
  8. Clark, C., Clarke, F., Munro, G. 1979The Optimal Exploitation of Renewable StocksEconometrica472547Google Scholar
  9. Krotov, V., Bukreev, V., Gurman, V. 1969New Variational Methods in Flight DynamicsMashinostroenieMoscow, RussiaGoogle Scholar
  10. Baumeister, J., On Optimal Control of a Fishery, Proceedings of NOLCOS’01, 5th IFAC Symposium on Nonlinear Control Systems, St. Petersburg, Russia, 2001.Google Scholar
  11. Arutyunov, A. 2000Second-Order Necessary Conditions in Optimal Control ProblemsDoklady Mathematics61158161Google Scholar
  12. Arutyunov, A. 2000Optimality Conditions Abnormal and Degenerate ProblemsKluwer Academic PublishersDordretch, HollandGoogle Scholar
  13. Krotov, V. 1996Global Methods in Optimal ControlMarcel DekkerNew York, NYGoogle Scholar
  14. Ledzewicz, U., Schaettler, H. 1998Higher- Order Conditions for OptimalitySIAM Journal on Control and Optimization373353Google Scholar
  15. Bressan, A., Rampazzo, F. 1991Impulsive Control Systems with Commutative Vector FieldsJournal of Optimization Theory and Applications716783Google Scholar
  16. Miller, B., Rubinovitch, E. 20002Impulsive Control in Continuous and Discrete-Continuous SystemsKluwer Academic PublishersAmsterdam, HollandGoogle Scholar
  17. Dykhta, V. 1981Conditions of Local Minimum for Singular Modes in the System with Linear ControlAutomation and Remote Control12510Google Scholar
  18. Dykhta, V. 1996Necessary Optimality Conditions for Impulsive Processes under Constraints on the Image of the Control MeasureIzvestiya Vyssikh Uchebnykh Zavedenyi Matematika1219Google Scholar
  19. Kolokolnikova, G. 1997A Variational Maximum Principle for Discontinuous Trajectories of Unbounded Asymptotically Linear Control SystemsJournal of Differential Equations3316331640Google Scholar
  20. Vinter, R., Pereira, F. 1988A Maximum Principle for Optimal Processes with Discontinuous TrajectoriesSIAM Journal on Control and Optimization26205229Google Scholar
  21. Pereira, F., Silva, G. 2000Necessary Conditions of Optimality for Vector-Valued Impulsive Control ProblemsSystems and Control Letters40205215Google Scholar
  22. Silva, G., Vinter, R. 1997Necessary Conditions for Optimal Impulsive Control ProblemsSIAM Journal on Control and Optimization3518291846Google Scholar
  23. Dykhta, V. 1994Variational Maximum Principle and Quadratic Optimality Conditions for Impulsive and Singular ProcessesSiberian Mathematical Journal357082Google Scholar
  24. Dykhta, V., Second-Order Necessary Optimality Conditions for Impulsive Control Problems and Multiprocesses, Singular Solutions and Perturbations in Control Systems, Edited by V. Gurman, B. Miller, M. Dmitriev, Pergamon, Elsevier Science, Kidlington, Oxford, UK, pp. 97–101, 1997.Google Scholar
  25. Sumsonuk, O., Quadratic Optimality Conditions for Optimal Impulsive Control Problems, Proceedings of the 12th Baikal International Conference on Optimization Methods and Their Applications, Irkutsk, Baikal, Russia, Vol. 2, pp. 144--149, 2001.Google Scholar
  26. Agrachev, A., Gamkrelidze, R. 1985Index of Extremality and QuasiextremalityRussian Mathematics Doklady2841114Google Scholar
  27. Arutyunov, A., Jacimovic, V., Pereira, F. 2003Second-Order Necessary Conditions for Optimal Impulsive Control ProblemsJournal of Dynamical and Control Systems9131153Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. Arutyunov
    • 1
  • V. Dykhta
    • 2
  • F. Lobo Pereira
    • 3
  1. 1.Department of Differential Equations and Functional AnalysisPeople Friendship University of RussiaMoscowRussia
  2. 2.Department of MathematicsBaikal State University of Economy and LawIrkutskRussia
  3. 3.Department of Electrotechnical and Computer Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations