Skip to main content

Advertisement

Log in

Using Video Games to Support Pre-Service Elementary Teachers Learning of Basic Physics Principles

  • Published:
Journal of Science Education and Technology Aims and scope Submit manuscript

Abstract

The purpose of this work is to share our findings in using video gaming technology to facilitate the understanding of basic electromagnetism with pre-service elementary teachers. To this end we explored the impact of using a game called Supercharged! on pre-service teachers’ understanding of electromagnetic concepts compared to students who conducted a more traditional inquiry oriented investigation of the same concepts. This study was a part of a larger design experiment examining the pedagogical potential of Supercharged! the control group learned through a series of guided inquiry methods while the experimental group played Supercharged! during the laboratory sections of the science course. There was significant difference F(2,134) = 4.8, p < 0.05, η2 = 0.59 between the control and experimental groups on the gains from pre-to-post assessment with an effect size of d = 0.72. However, while students in the experimental group performed better than their control group peers, they rated their knowledge of the topic lower than the control group (M post-control = 3.0, M post-experiment = 2.7), leading to further examination of their laboratory journals. Results of this study show that video games can lead to positive learning outcomes, as demonstrated by the increase in test scores from pre- to post-assessment. Additionally, this study also suggests that a complementary approach, in which video games and hands-on activities are integrated, with each activity informing the other, could be a very powerful technique for supporting student scientific understanding. Further, our findings suggest that video game designers should embed meta-cognitive activities such as reflective opportunities into educational video games to provide scaffolds for students and to reinforce that they are engaged in an educational learning experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The right hand rule is a common mnemonic for understanding the direction of force that a charge particle experiences when moving in a magnetic field. For example, if you hold up your right hand with your thumb in the direction of the charge’s motion and then imagine that your finger represents the direction of the magnetic field, the direction that your palm faces is the direction of force.

References

  • American Association of Physics Teachers (2006) Physics first. College Park, Maryland

    Google Scholar 

  • Andre T, Ding P (1991) Student misconceptions, declarative knowledge, stimulus conditions, and problem-solving in basic electricity. Contemp Educ Psychol 16(4):303–313

    Article  Google Scholar 

  • Annetta L (2008) Video games in education: why they should be used and how are they being used? Theory Pract 47:229–239

    Google Scholar 

  • Bagno E, Eylon BS (1997) From problem solving to a knowledge structure: an example from the domain of electromagnetism. Am J Phys 65(8):726–736

    Article  Google Scholar 

  • Barab SA, Sadler TD, Heiselt C, Hickey D, Zuiker S (2007) Relating narrative, inquiry and inscriptions: supporting consequential play. J Sci Educ Technol 16(1):59–82

    Article  Google Scholar 

  • Barab SA, Ingram-Goble A, Warren S (2008) Conceptual playspaces. In: Ferdig R (ed) Handbook on research on effective electronic gaming in education. IGI Global, New York

    Google Scholar 

  • Barnett M, Keating T, Barab SA, Hay KE (2000) Conceptual change through building three-dimensional models. In: Fishman BJ, O’Connor SF (eds) Proceedings of the international conference of the learning sciences. Erlbaum, Hillsdale, NJ, pp 134–142

    Google Scholar 

  • Belcher J (2003) From the mind’s eye to 3D animation: teaching electromagnetism with learning technology. Last retrieved August 1, 2008 from http://www.wcer.wisc.edu/nise/cl1/ilt/solution/belchej2.htm

  • Belcher J, Murray J, Zahn M (1999) Force field: using animation in teaching electromagnetism. Last retrieved from http://web.mit.edu/user/j/b/jbelcher/www/NSF.html August 1 2008

  • Blumenfeld PC, Soloway E, Marx RW, Krajcik JS, Guzdial M, Palincsar A (1991) Motivating project-based learning: sustaining the doing, supporting the learning. Educ Psychol 26(3 & 4):369–398

    Google Scholar 

  • Brown A (1992) Design experiments: theoretical and methodological challenges in creating complex interventions in classroom settings. J Learn Sci 2(2):141–178

    Article  Google Scholar 

  • Brown DE, Hammer D (2008) Conceptual change in physics. In: Vosniadou S (ed) International handbook of research on conceptual change. Routledge, New York, pp 127–154

    Google Scholar 

  • Bruckman A, Resnick M (1995) The MediaMOO project. Conv Int J Res New Media Technol 1(1):94–109

    Article  Google Scholar 

  • Casperson JM, Linn MC (2006) Using visualization to teach electrostatics. Am J Phys 74(4):316–323

    Article  Google Scholar 

  • Chambers S, Andre T (1995) Are conceptual change approaches to learning science effective for everyone? Gender, Prior subject matter, interest, and learning about electricity. Contemp Educ Psychol 20:377–391

    Article  Google Scholar 

  • Chi MTH, Feltovich PJ, Glaser R (1991) Categorization and representation of physics problems by experts and novices. Cogn Sci 5:121–152

    Google Scholar 

  • Cohen J (1988) Statistical power analysis for behavioral sciences, 2nd edn. Lawrence Erlbaum, Hillsdale, NJ

  • Coller BD, Scott MJ (2009) Effectiveness of using a video game to teach a course in mechanical engineering. Comput Educ 53:900–912

    Article  Google Scholar 

  • Collins A (1990) Reformulating testing to measure learning and thinking. In: Frederiksen N, Glaser R, Lesgold A, Shafto M (eds) Diagnostic monitoring of skills and knowledge acquisition. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 325–350

    Google Scholar 

  • Computing Research Association (2006) Cyber-infrastructure for education and learning for the future: a vision and research agenda

  • Cordova DI, Lepper MR (1996) Intrinsic motivation and the process of learning: beneficial effects of contextualization, personalization, and choice. J Educ Psychol 88:715–730

    Article  Google Scholar 

  • de Frietas SI, Oliver M (2006) How can exploratory learning with games and simulations within the curriculum be most effectively evaluated? Comput Educ 46(3):249–264

    Article  Google Scholar 

  • Dede C, Salzman M, Loftin B (1996) ScienceSpace: virtual realities for learning complex and abstract scientific concepts. In: Paper presented at the proceedings of IEEE virtual reality annual international symposium, New York

  • Dede C, Salzman M, Loftin RB, Sprague D (1999) Multisensory immersion as a modeling environment for learning complex scientific concepts. In: Feurzeig W, Roberts N (eds) Modeling and simulation in science and mathematics education. Springer Verlag, New York

    Google Scholar 

  • Dede C, Clarke J, Kettlehut D, Nelson B (2005) Students motivation and learning of science in a multi-user environment. In: Paper presented at the annual meeting of the American Educational Research Association, Apr 2005, Montreal, Quebec, Canada

  • diSessa A (2000) Changing minds. MIT Press, Cambridge

    Google Scholar 

  • diSessa A (2006) A history of conceptual change research. In: Sawyer RK (ed) The Cambridge handbook of the learning sciences. Cambridge University Press, New York

    Google Scholar 

  • diSessa A (2008) A bird’s eye view of the “pieces” vs. “coherence” controversy (from the “pieces” side of the fence). In: Vosniadou S (ed) International handbook of research on conceptual change. Routledge, New York, pp 35–60

    Google Scholar 

  • Duit R (2006) Bibliography: students’ and teachers’ conceptions and science education. Kiel, Germany. IPN. Electronic version downloaded July 22, 2009 from http://www.ipn.uni-kiel.de/aktuell/stcse/stcse.html

  • Dumbleton T, Kirriemuir J (2006) Digital games and education. In: Rutter J, Bryce J (eds) Understanding digital games. Sage, London

    Google Scholar 

  • Egenfeldt-Nielsen S (2006) Overview of the research on the educational use of video games. Digital Kompetase 1:184–213

    Google Scholar 

  • Engenfeldt-Nielson S (2004) Practical barriers in using educational computer games. On the Horizon 12(1):18–21

    Article  Google Scholar 

  • Erickson T (1993) Artificial realities as data visualization environments. In: Wexelblat A (ed) Virtual reality: applications and explorations. Academic Press Professional, New York, pp 1–22

    Google Scholar 

  • Forbus K (1997) Using qualitative physics to create articulate educational software. IEEE Expert 12:32–41

    Article  Google Scholar 

  • Furio C, Guisasola J (1998) Difficulties in learning the concept of electric field. Sci Educ 82(4):511–526

    Article  Google Scholar 

  • Games-to-Teach Team (2003) Design principles of next-generation digital gaming for education. Educ Technol 43(5):17–33

    Google Scholar 

  • Gee JP (2003a) What videogames have to teach us about learning and literacy. Palgrave Macmillan, New York

    Google Scholar 

  • Gee JP (2003b) High score education: games, not school, are teaching kids to think. Wired. Accessed online May 2009 from http://www.wired.com/wired/archive/11.05/view_pr.html

  • Ginn IS, Watters JJ (1995) An analysis of scientific understandings of pre-service elementary teacher education students. J Res Sci Teach 32(2):205–222

    Article  Google Scholar 

  • Glaser BG, Strauss AL (1967) The discovery of grounded theory. Aldine Publishing, Chicago, IL

    Google Scholar 

  • Gordin DN, Pea RD (1995) Prospects for scientific visualization as an educational technology. J Learn Sci 4(3):249–275

    Article  Google Scholar 

  • Grea IM, Moreira MA (1997) The kinds of mental representations—models, propositions, and images—used by college physics students regarding the concept of field. Int J Sci Educ 19(6):711–724

    Article  Google Scholar 

  • Gros B (2003) The impact of digital games in education. First Monday 8(7):6

    Google Scholar 

  • Guruswamy C, Somers MD, Hussey RG (1997) Students’ understanding of the transfer of charge between conductors. Phys Educ 32:91

    Article  Google Scholar 

  • Hewitt PG (2002) Conceptual physics with practicing physics workbook. Benjamin Cummings, New York

    Google Scholar 

  • Hostetter O (2003) Video games—the necessity of incorporating video games as part of constructivist learning. Retrieved from http://www.game-research.com/art_games_constructivist.asp

  • Kebritchi M, Hirumi A, Bai H (2008) The effects of modern math games on learners’ achievement and math course motivation in a public high school setting. UCF Research Brief. Retrieved July 22, 2009 from http://www.dimensionsm.com/docs/UCFResearch_Brief_June_202008.pdf

  • Kettlehut D, Dede C, Clarke J, Nelson B (2006) A multi-user virtual environment for building higher order inquiry skills in science. In: Paper presented at the American Educational Research Association international conference. San Francisco, CA

  • Kirriemuir J, McFarlane A (2004) Literature review in games and learning. Futurelab, UK

    Google Scholar 

  • Lincoln YS, Guba EG (1985) Naturalistic inquiry. Sage, Newbury Park, CA

    Google Scholar 

  • Linn MC, Eylon B (2006) Science education: integrating views of learning and instruction. In: Alexander PA, Winne PH (eds) Handbook of educational psychology, 2nd edn. Lawrence Erlbaum Associates, New Jersey

    Google Scholar 

  • MacDonald K, Hannafin R (2003) Using web-based computer games to meet the demands of today’s high stakes testing: a mixed methods inquiry. J Res Technol Educ 35(4):459–472

    Google Scholar 

  • Mayo MJ (2007) Games for science and engineering education. Commun ACM 50(7):30–35

    Article  Google Scholar 

  • Mayo MJ (2009) Video games: a route to large-scale STEM education? Science 323:79–82

    Article  Google Scholar 

  • McClean P, Saini-Eidukat B, Schwert D, Slator B, White A (2001) Virtual worlds in large enrollment biology and geology classes significantly improve authentic learning. In: Chambers JA (eds) Selected papers from the 12th international conference on college teaching and learning (ICCTL-01). Center for the Advancement of Teaching and Learning, Jacksonville, FL. Apr 17–21, pp 111–118

  • McDermott LC, Shaffer PS, Constantinou CP (2000) Preparing teachers to teach physics and physical science by inquiry. Phys Educ 35:411–416

    Article  Google Scholar 

  • McFarlane A, Sparrowhawk A, Heald Y (2002) Report on the educational use of games: an exploration by TEEM of the contribution which games can make to the education process. Cambridge

  • Miller CS, Lehman JF, Koedinger KR (1999) Goals and learning in microworlds. Cogn Sci 23(3):305–336

    Article  Google Scholar 

  • NSF Task Force on Cyber-learning (2008) Fostering learning in the networked world: Learning opportunity and challenge, a 21st century agenda for the National Science Foundation. National Science Foundation, Arlington, VA

    Google Scholar 

  • Oblinger DG (2006) Games and learning: digital games have potential to bring play back to learning experience. Educ Q 3:5–7

    Google Scholar 

  • Ochs W (1990) The importance of phase space dimension in the intermittency analysis of multi hadron production. Phys Lett 247(1):101

    Google Scholar 

  • Pope M, Hare D, Howard E (2002) Technology integration: closing the gap between what pre-service teachers are taught to do and what they can do. J Technol Teach Educ 10(2):191–203

    Google Scholar 

  • Prensky M (2001) Digital game based learning. McGraw Hill, New York

    Google Scholar 

  • Prensky M (2004) The motivation of gameplay. On the Horizon 10(1):5–11

    Article  Google Scholar 

  • Prensky M (2006) Don’t bother me Mom, I’m learning! Paragon House Publishing, New York

  • Project Tomorrow (2008). Leadership in the 21st century: the new visionary administrator. Project Tomorrow, Irvine, CA. Retrieved June 8, 2009 from http://www.blackboard.com/Solutions-by-Market/K-12/Learn-for-K12/Leadership-Views/Education-in-the-21st-Century.aspx

  • Psotka J (1996) Immersive training systems: virtual reality and education and training. Instr Sci 23(5–6):405–423

    Google Scholar 

  • Redish EF (1993) The implications of cognitive studies for teaching physics. Am J Phys 62(9):796–803

    Article  Google Scholar 

  • Rosas R, Nussbaum M, Cumsille P, Marianov V, Correa M, Flores P et al (2003) Beyond nintendo: design and assessment of educational video games for first and second grade students. Comput Educ 40:71–94

    Article  Google Scholar 

  • Russell M, Bebell D, O’Dwyer L, O’Connor K (2003) Examining teacher technology use: implications for pre-service and in-service teacher preparation. J Teach Educ V 54:297

    Article  Google Scholar 

  • Schoon K, Boone WJ (1998) Self-efficacy and alternative conceptions of science of pre-service elementary teachers. Sci Educ 82(5):553–568

    Article  Google Scholar 

  • Shaffer DW, Squire K, Halveson RP, Gee JP (2004) Video games and the future of learning. Phi Delta Kappan 87(2):104–111

    Google Scholar 

  • Squire K (2003) Video games in education [Electronic Version]. International Journal of Intelligent Games and Simulations. Retrieved Sept 5, 2006 from http://www.scit.wly.ac.uk/~cm1822/ijkurt.pdf

  • Squire K (2004) Replaying history. Unpublished Dissertation, Indiana University Bloomington

  • Squire K (2006) From content to context: videogames as designed experience. Educ Res 35(8):19–29

    Google Scholar 

  • Squire K (2008) Video game-based learning: an emerging paradigm for instruction. Perform Improv Q 21(7):7–36

    Article  Google Scholar 

  • Squire K, Barnett M, Grant JM, Higginbotham T (2003) Electromagnetism Supercharged! Learning physics with digital simulation games. In: Paper presented at the annual meeting of the international conference of learning sciences. San Diego, California

  • Steinkuhler C, Duncan S (2008) Scientific habits of mind. J Sci Educ Technol 17:530–543

    Article  Google Scholar 

  • Van Eck R (2006) Presentation at educause learning initiative annual meeting. In: Paper presented at the educause learning initiative annual meeting from http://www.educause.edu/upload/presentations/EL1061/FS04/Van%Eck.swf

  • Viennot L (1994) Students’ understanding of superposition of electric fields. Am J Phys 62:1026–1032

    Article  Google Scholar 

  • Viennot L, Rainson S (1992) Students’ reasoning about the superposition of electric fields. Int J Sci Educ 14(4):475–487

    Article  Google Scholar 

  • White BY, Frederiksen JR (1998) Inquiry, Modeling, and metacognition: making science accessible to all students. Cogn Instr 16(1):3–118

    Article  Google Scholar 

  • Willamson B, Facer K (2004) More than just a ‘game’: the implications for schools of children’s computer game communities. Educ Commun Inform 4(2/3):253–268

    Google Scholar 

  • Yair Y, Mintz R, Litvak S (2001) 3D-Virtual reality in science education: an implication for astronomy teaching. J Comp Math Sci Teach 20(3):293–305

    Google Scholar 

Download references

Acknowledgments

This work is supported in part through a Hewlett Packard Foundation—Teaching with Technology Program Grant# 189660. We also would like to thank Kurt Squire at the University of Wisconsin for allowing us to use Supercharged!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J., Barnett, M. Using Video Games to Support Pre-Service Elementary Teachers Learning of Basic Physics Principles. J Sci Educ Technol 20, 347–362 (2011). https://doi.org/10.1007/s10956-010-9257-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10956-010-9257-0

Keywords

Navigation