Advertisement

Journal of Science Education and Technology

, Volume 18, Issue 3, pp 265–274 | Cite as

Teaching Energy Conservation as a Unifying Principle in Physics

  • Jordi SolbesEmail author
  • Jenaro Guisasola
  • Francisco Tarín
Article

Abstract

In this work we present the design and assessment of a teaching sequence aimed at introducing the principle of energy conservation at post-compulsory secondary school level (16–18 year olds). The proposal is based on the result of research into teaching-learning difficulties and on the analysis of the physics framework. Evidence is shown that this teaching sequence, together with the methodology used in the classroom, may result in students having a better grasp of the principle of energy conservation.

Keywords

Physics education Energy conceptions Teaching activities 

References

  1. Albert E (1978) Development of the concept of heat in children. Sci Educ 62(3):389–399. doi: 10.1002/sce.3730620316 CrossRefGoogle Scholar
  2. Alonso M, Finn EJ (1992) Physics. Addison-Wesley, ReadingGoogle Scholar
  3. Arnold M (1994) Children’s and lay adults’ views about thermal equilibrium. Int J Sci Educ 16(4):405–419. doi: 10.1080/0950069940160403 CrossRefGoogle Scholar
  4. Arons AB (1997) Teaching in introductory physics. Wiley, New YorkGoogle Scholar
  5. Arons AB (1999) Development of energy concepts in introductory physics courses. Am J Phys 67(12):1063–1067. doi: 10.1119/1.19182 CrossRefGoogle Scholar
  6. Brook A, Wells P (1988) Conserving the circus? Phys Educ 23(2):80–85. doi: 10.1088/0031-9120/23/2/002 CrossRefGoogle Scholar
  7. Carr M, Kirkwood V (1988) Teaching and learning about energy in New Zealand secondary school junior science classrooms. Phys Educ 23(2):87–91. doi: 10.1088/0031-9120/23/2/003 CrossRefGoogle Scholar
  8. Chedid LG (2005) Energy, society, and education, with emphasis on educational technology policy for K-12. J Sci Educ Technol 14(1):75–85. doi: 10.1007/s10956-005-2735-0 CrossRefGoogle Scholar
  9. Crocker AC (1969) Statistics for the teacher or how to put figures in their places. Penguin Books, MiddlesexGoogle Scholar
  10. Doménech JL, Gil D, Grás A, Guisasola J, Martínez J, Salinas J, Trumper R, Valdés P, Vilches A (2007) Teaching of energy issues: a debate proposal for a global reorientation. Sci Educ 16:43–64. doi: 10.1007/s11191-005-5036-3 CrossRefGoogle Scholar
  11. Driver R, Warrington L (1985) Students’ use of the principle of energy conservation in problem situations. Phys Educ 20(4):171–176. doi: 10.1088/0031-9120/20/4/308 CrossRefGoogle Scholar
  12. Duit R (1981) Understanding energy as a conserved quantity—remarks on the article by R. U. Sexl. Eur J Sci Educ 3(3):291–301Google Scholar
  13. Duit R (1984) Learning the energy concept in school-empirical results from The Philippines and West Germany. Phys Educ 19(2):59–66. doi: 10.1088/0031-9120/19/2/306 CrossRefGoogle Scholar
  14. Duit R (1987) Should energy be illustrated as something quasi-material? Eur J Sci Educ 9(2):139–145Google Scholar
  15. Erickson G (1979) Children’s conceptions of heat and temperature. Sci Educ 6(2):221–230Google Scholar
  16. Erickson G (1980) Children’s viewpoints of heat: a second look. Sci Educ 64(3):323–336. doi: 10.1002/sce.3730640307 CrossRefGoogle Scholar
  17. Ericsson KA, Simon HA (1984) Protocol analysis: verbal reports as data. MIT Press, CambridgeGoogle Scholar
  18. Furió-Mas C, Solbes J, Furió-Gómez C (2008) Towards a proposal for effective ongoing training programmes for science teachers. Problems of Education in 21th Century 6:60–71Google Scholar
  19. Goldring H, Osborne J (1994) Students’ difficulties with energy and related concepts. Phys Educ 29(1):26–31. doi: 10.1088/0031-9120/29/1/006 CrossRefGoogle Scholar
  20. Guisasola J, Furió C, Ceberio M (2008) Science education based on developing guided research. In: Thomase MV (ed) Science education in focus. Nova Science Publisher, New York, pp 55–85Google Scholar
  21. Kesidou S, Duit R (1993) Students’ conceptions of the second law of thermodynamics-an interpretative study. J Res Sci Teach 30(1):85–106. doi: 10.1002/tea.3660300107 CrossRefGoogle Scholar
  22. Labur CE, Niaz M (2002) A lakatosian framework to analyze situations of cognitive conflict and controversy in students’ understanding of heat energy and temperature. J Sci Educ Technol 11(3):267–277Google Scholar
  23. Meheut M, Psillos D (2004) Teaching-learning sequences: aims and tools for science education research. Int J Sci Educ 26(5):515–535. doi: 10.1080/09500690310001614762 CrossRefGoogle Scholar
  24. Mortimer EF, Scott P (2000) Analysing discourse in the science classroom. In: Leach J, Miller R, Osborne J (eds) Improving science education: the contribution of research. Open University Press, Buckingham, pp 126–142Google Scholar
  25. Ogborn J (1986) Energy and fuel: the meaning of ‘the go of things'. Sch Sci Rev 67:30–35Google Scholar
  26. Solbes J, Tarín F (1998) Algunas dificultades en torno a la conservación de la energía. Ensen Cienc 16(3):387–397Google Scholar
  27. Solbes J, Tarín F (2004) La conservación de la energía: un principio de toda la física. Una propuesta y unos resultados. Ensen Cienc 22(2):185–194Google Scholar
  28. Solbes J, Vilches A (1997) STS interactions and the teaching of physics and chemistry. Sci Educ 81(4):377–386. doi: 10.1002/(SICI)1098-237X(199707)81:4<377::AID-SCE1>3.0.CO;2-9 CrossRefGoogle Scholar
  29. Solomon J (1983) Learning about energy: how pupils think in two domains. Eur J Sci Educ 5(1):49–59Google Scholar
  30. Solomon J (1985) Teaching the conservation of energy. Phys Educ 20(4):165–176. doi: 10.1088/0031-9120/20/4/307 CrossRefGoogle Scholar
  31. Tarín F (2000) El principio de conservación de la energía y sus implicaciones didácticas, Ph.D. Thesis, Universitat de ValènciaGoogle Scholar
  32. Truesdell C (1968) Essays in the history of mechanics. Springer, Berlin, New YorkGoogle Scholar
  33. Trumper R (1997) Applying conceptual conflict strategies in the learning of the energy concept. Res Sci Technol Educ 15(1):5–18. doi: 10.1080/0263514970150101 CrossRefGoogle Scholar
  34. Trumper R (1998) A longitudinal study of physics students’ conceptions on energy in pre-service training for high school teachers. J Sci Educ Technol 7(4):75–86. doi: 10.1023/A:1021867108330 CrossRefGoogle Scholar
  35. Van Huls C, Van Den Berg E (1993) Teaching energy: a systems approach. Phys Educ 28(3):146–153. doi: 10.1088/0031-9120/28/3/003 CrossRefGoogle Scholar
  36. Van Roon PH, Van Sprang HF, Verdonk AH (1994) ‘Work' and ‘heat': on a road towards thermodynamics. Int J Sci Educ 16(2):131–144. doi: 10.1080/0950069940160203 CrossRefGoogle Scholar
  37. Viglietta L (1990) A more ‘efficient' approach to energy teaching. Int J Sci Educ 12(5):491–500. doi: 10.1080/0950069900120503 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jordi Solbes
    • 1
    Email author
  • Jenaro Guisasola
    • 2
  • Francisco Tarín
    • 3
  1. 1.Department for the Teaching of ScienceUniversity of ValenciaValenciaSpain
  2. 2.Department of Applied Physics IUniversity of the Basque CountryLeioaSpain
  3. 3.IES L’OmPicassentSpain

Personalised recommendations