Skip to main content
Log in

Dynamical Fractional and Multifractal Fields

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Motivated by the modeling of three-dimensional fluid turbulence, we define and study a class of stochastic partial differential equations (SPDEs) that are randomly stirred by a spatially smooth and uncorrelated in time forcing term. To reproduce the fractional, and more specifically multifractal, regularity nature of fully developed turbulence, these dynamical evolutions incorporate an homogenous pseudo-differential linear operator of degree 0 that takes care of transferring energy that is injected at large scales in the system, towards smaller scales according to a cascading mechanism. In the simplest situation which concerns the development of fractional regularity in a linear and Gaussian framework, we derive explicit predictions for the statistical behaviors of the solution at finite and infinite time. Doing so, we realize a cascading transfer of energy using linear, although non local, interactions. These evolutions can be seen as a stochastic version of recently proposed systems of forced waves intended to model the regime of weak wave turbulence in stratified and rotational flows. To include multifractal, i.e. intermittent, corrections to this picture, we get some inspiration from the Gaussian multiplicative chaos, which is known to be multifractal, to motivate the introduction of an additional quadratic interaction in these dynamical evolutions. Because the theoretical analysis of the obtained class of nonlinear SPDEs is much more demanding, we perform numerical simulations and observe the non-Gaussian and in particular skewed nature of their solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2. Stoch. Process. Appl. 86(1), 121–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apolinário, G.B., Chevillard, L.: Space-time statistics of a linear dynamical energy cascade model. arXiv preprint arXiv:2109.00489 (2021)

  3. Arneodo, A., Bacry, E., Muzy, J.-F.: Random cascades on wavelet dyadic trees. J. Math. Phys. 39(8), 4142–4164 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bacry, E., Delour, J., Muzy, J.-F.: Multifractal random walk. Phys. Rev. E 64(2), 026103 (2001)

    Article  ADS  MATH  Google Scholar 

  5. Bacry, E., Muzy, J.-F.: Log-infinitely divisible multifractal processes. Commun. Math. Phys. 236(3), 449–475 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Barbato, D., Bianchi, L.A., Flandoli, F., Morandin, F.: A dyadic model on a tree. J. Math. Phys. 54(2), 021507 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Barbato, D., Morandin, F., Romito, M.: Smooth solutions for the dyadic model. Nonlinearity 24(11), 3083 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Barral, J., Mandelbrot, B.B.: Multifractal products of cylindrical pulses. Probab. Theory Relat. Fields 124(3), 409–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benzi, R., Biferale, L., Crisanti, A., Paladin, G., Vergassola, M., Vulpiani, A.: A random process for the construction of multiaffine fields. Physica D 65(4), 352–358 (1993)

    Article  ADS  MATH  Google Scholar 

  10. Bianchi, L.A., Morandin, F.: Structure function and fractal dissipation for an intermittent inviscid dyadic model. Commun. Math. Phys. 356(1), 231–260 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Biferale, L.: Shell models of energy cascade in turbulence. Annu. Rev. Fluid Mech. 35(1), 441–468 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bohr, T., Jensen, M.H., Paladin, G., Vulpiani, A.: Dynamical Systems Approach to Turbulence. Cambridge Nonlinear Science Series, Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  13. Bos, W., Chevillard, L., Scott, J., Rubinstein, R.: Reynolds number effect on the velocity increment skewness in isotropic turbulence. Phys. Fluids 24(1), 015108 (2012)

    Article  ADS  Google Scholar 

  14. Brouzet, C., Ermanyuk, E., Joubaud, S., Sibgatullin, I., Dauxois, T.: Energy cascade in internal-wave attractors. EPL 113(4), 44001 (2016)

    Article  ADS  Google Scholar 

  15. Brun, C., Pumir, A.: Statistics of Fourier modes in a turbulent flow. Phys. Rev. E 63(5), 056313 (2001)

    Article  ADS  Google Scholar 

  16. Chainais, P., Riedi, R., Abry, P.: On non-scale-invariant infinitely divisible cascades. IEEE Trans. Inf. Theory 51(3), 1063–1083 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheskidov, C., Friedlander, S., Pavlović, N.: An inviscid dyadic model of turbulence: the global attractor. Discret. Cont. Dyn. Syst. 26(3), 781–794 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chevillard, L.: Regularized fractional Ornstein–Uhlenbeck processes and their relevance to the modeling of fluid turbulence. Phys. Rev. E 96(3), 033111 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Chevillard, L., Castaing, B., Arneodo, A., Lévêque, E., Pinton, J.-F., Roux, S.: A phenomenological theory of Eulerian and Lagrangian velocity fluctuations in turbulent flows. C. R. Physique 13, 899 (2012)

    Article  ADS  Google Scholar 

  20. Chevillard, L., Garban, C., Rhodes, R., Vargas, V.: On a skewed and multifractal unidimensional random field, as a probabilistic representation of Kolmogorov’s views on turbulence. Ann. Henri Poincaré 20(11), 3693–3741 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Chevillard, L., Lagoin, M., Roux, S.G.: Multifractal fractional Ornstein-Uhlenbeck processes. arXiv preprint arXiv:2011.09503, (2020)

  22. Chevillard, L., Mazellier, N., Poulain, C., Gagne, Y., Baudet, C.: Statistics of Fourier modes of velocity and vorticity in turbulent flows: intermittency and long-range correlations. Phys. Rev. Lett. 95(20), 200203 (2005)

    Article  ADS  Google Scholar 

  23. Chevillard, L., Robert, R., Vargas, V.: A stochastic representation of the local structure of turbulence. EPL 89(5), 54002 (2010)

    Article  ADS  Google Scholar 

  24. Colin de Verdière, Y.: Spectral theory of pseudodifferential operators of degree 0 and an application to forced linear waves. Anal. PDE 13(5), 1521–1537 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Colin de Verdière, Y., Saint-Raymond, L.: Attractors for two-dimensional waves with homogeneous Hamiltonians of degree 0. Commun. Pure Appl. Math. 73(2), 421–462 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Constantin, P., Levant, B., Titi, E.S.: Analytic study of shell models of turbulence. Physica D 219(2), 120–141 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Daubechies, I.: Ten lectures on wavelets. SIAM (1992)

  28. Dubédat, J., Shen, H.: Stochastic Ricci flow on compact surfaces. Int. Math. Res. Notices 04, rnab015 (2021)

    Google Scholar 

  29. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13(1), 249 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Log-correlated Gaussian Fields: An Overview, pp. 191–216. Springer International Publishing, Cham (2017)

    MATH  Google Scholar 

  31. Dyatlov, S., Zworski, M.: Microlocal analysis of forced waves. Pure Appl. Anal. 1(3), 359–384 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Frisch, U.: Turbulence. The Legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  33. Garban, C.: Dynamical Liouville. J. Funct. Anal. 278(6), 108351 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gu, Y., Mourrat, J.-C.: Scaling limit of fluctuations in stochastic homogenization. Multiscale Model. Simul. 14(1), 452–481 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9, 105 (1985)

    MathSciNet  MATH  Google Scholar 

  36. Kolmogorov, A.N.: The local structure of turbulence in a incompressible viscous fluid for very large \(\text{ R }\)eynolds number. Dokl. Akad. Nauk SSSR 30, 299 (1941)

    ADS  MathSciNet  Google Scholar 

  37. Lacoin, H., Rhodes, R., Vargas, V.: Complex Gaussian multiplicative chaos. Commun. Math. Phys. 337(2), 569–632 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Leith, C.E.: Diffusion approximation to inertial energy transfer in isotropic turbulence. Phys. Fluids 10, 1409 (1967)

    Article  ADS  Google Scholar 

  39. Maas, L.R., Benielli, D., Sommeria, J., Lam, F.-P.A.: Observation of an internal wave attractor in a confined, stably stratified fluid. Nature 388(6642), 557–561 (1997)

    Article  ADS  Google Scholar 

  40. Maas, L.R., Lam, F.-P.A.: Geometric focusing of internal waves. J. Fluid Mech. 300, 1–42 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Mailybaev, A.A.: Continuous representation for shell models of turbulence. Nonlinearity 28(7), 2497 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Mandelbrot, B.B.: Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: Rosenblatt, M., Van Atta, C. (eds.) Statistical Models and Turbulence. Lecture Notes in Physics, vol. 12, pp. 333–351. Springer, Berlin Heidelberg (1972)

    Chapter  Google Scholar 

  43. Mandelbrot, B.B., Van Ness, J.W.: Fractional \(\text{ B }\)rownian motion, fractional noises and applications. SIAM Rev. 10, 422 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Mattingly, J.C., Suidan, T., Vanden-Eijnden, E.: Simple systems with anomalous dissipation and energy cascade. Commun. Math. Phys. 276(1), 189–220 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Mordant, N., Delour, J., Léveque, E., Arnéodo, A., Pinton, J.-F.: Long time correlations in Lagrangian dynamics: a key to intermittency in turbulence. Phys. Rev. Lett. 89(25), 254502 (2002)

    Article  ADS  Google Scholar 

  46. Orszag, S.A.: Analytical theories of turbulence. J. Fluid Mech. 41(2), 363–386 (1970)

    Article  ADS  MATH  Google Scholar 

  47. Pereira, R.M., Garban, C., Chevillard, L.: A dissipative random velocity field for fully developed fluid turbulence. J. Fluid Mech. 794, 369–408 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  49. Rhodes, R., Sohier, J., Vargas, V.: Levy multiplicative chaos and star scale invariant random measures. Ann. Probab. 42(2), 689–724 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Rieutord, M., Valdettaro, L.: Inertial waves in a rotating spherical shell. J. Fluid Mech. 341, 77–99 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Robert, R., Vargas, V.: Hydrodynamic turbulence and intermittent random fields. Commun. Math. Phys. 284(3), 649–673 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Schertzer, D., Lovejoy, S.: Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J. Geophys. Res. 92(D8), 9693–9714 (1987)

    Article  ADS  Google Scholar 

  54. Schmitt, F., Marsan, D.: Stochastic equations generating continuous multiplicative cascades. Eur. Phys. J. B 20(1), 3–6 (2001)

    ADS  Google Scholar 

  55. Scolan, H., Ermanyuk, E., Dauxois, T.: Nonlinear fate of internal wave attractors. Phys. Rev. Lett. 110(23), 234501 (2013)

    Article  ADS  Google Scholar 

  56. Tennekes, H., Lumley, J.L.: A first Course in Turbulence. MIT Press, Cambridge (1972)

    Book  MATH  Google Scholar 

  57. Thalabard, S., Nazarenko, S., Galtier, S., Medvedev, S.: Anomalous spectral laws in differential models of turbulence. J. Phys. A 48, 285501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We warmly thank Laure Saint-Raymond, with whom this project has started, for many enlightening discussions. Also, we thank Jérémie Bouttier, Grégory Miermont, Rémi Rhodes and Simon Thalabard for several discussions on this subject, and Martin Hairer for additional fruitful discussions and for bringing to our knowledge the important Ref. [44]. G. B. A. and L. C. are partially supported by the Simons Foundation Award ID: 651475. J.-C. M. is partially supported by the NSF Grant DMS-1954357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Chevillard.

Additional information

Communicated by Massimo Vergassola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Proposition 5

Proof of Proposition 5

Let us start with proposing Lemma 1, similarly to the Lemma 2.1 of Ref. [52], but here for complex Gaussian variables:

Lemma 1

Consider a complex zero average Gaussian random variable Z, a function \(F:{\mathbb {C}}\rightarrow {\mathbb {C}}\) and its derivative \(F'\) that grows at most exponentially. We have

$$\begin{aligned} {\mathbb {E}}\left[ ZF(Z)\right] ={\mathbb {E}}(Z^2){\mathbb {E}}\left[ F'(Z)\right] . \end{aligned}$$
(74)

More generally, considering the collection of \((n+1)\) complex Gaussian variables \((Z,Z_1,\ldots ,Z_n)\) and the function \(F:{\mathbb {C}}^n\rightarrow {\mathbb {C}}\). We have the following Gaussian integration by parts formula

$$\begin{aligned} {\mathbb {E}}\left[ ZF(Z_1,\ldots ,Z_n)\right] =\sum _{k=1}^n{\mathbb {E}}(ZZ_k){\mathbb {E}}\left[ \frac{\partial F}{\partial x_k}(Z_1,\ldots ,Z_n)\right] . \end{aligned}$$
(75)

Proof of Proposition 5

Concerning the average of \(v_{H,\gamma }\) (Eq. 59), we make use of Eq. (75) and obtain

$$\begin{aligned} {\mathbb {E}}\left[ e^{\gamma {\widetilde{P}}_0u_0(t,y)} u_0(t,y)\right] =\gamma {\mathbb {E}}\left[ u_0(t,y){\widetilde{P}}_0u_0(t,y)\right] e^{\frac{\gamma ^2}{2}{\mathbb {E}}\left[ {\widetilde{v}}_0^2(t,y)\right] }=0, \end{aligned}$$
(76)

because for any positions, \({\mathbb {E}}\left[ u_0(t,y)u_0(t,z)\right] =0\) (Eq. 15), which shows that \({\mathbb {E}}v_{H,\gamma }=0\).

The calculation of the variance is done in a similar way, and requires the following step: Making use of Eq. (75), we obtain

$$\begin{aligned}&{\mathbb {E}}\left[ u_0(t,y_1) u_0^*(t,y_2)e^{\gamma \left( {\widetilde{P}}_0u_0(t,y_1)+{\widetilde{P}}_0u_0^*(t,y_2)\right) }\right] ={\mathcal {C}}_{u_0} (t,y_1-y_2)e^{\gamma ^2{\mathcal {C}}_{{\widetilde{v}}_0}(t,y_1-y_2)}\nonumber \\&\qquad +\gamma {\mathbb {E}}\left[ u_0(t,y_1) {\widetilde{P}}_0u_0^*(t,y_2)\right] {\mathbb {E}}\left[ u_0^*(t,y_2)e^{\gamma \left( {\widetilde{P}}_0u_0(t,y_1)+{\widetilde{P}}_0u_0^*(t,y_2)\right) }\right] \nonumber \\&\quad = \left( {\mathcal {C}}_{u_0}(t,y_1-y_2) + \gamma ^2 {\mathbb {E}}\left[ u_0(t,y_1) {\widetilde{P}}_0u_0^*(t,y_2)\right] {\mathbb {E}}\left[ u_0^*(t,y_2) {\widetilde{P}}_0u_0(t,y_1)\right] \right) e^{\gamma ^2\mathcal C_{{\widetilde{v}}_0}(t,y_1-y_2)}. \end{aligned}$$
(77)

Using the odd symmetry of the function \( {\widetilde{P}}_0(x)=- {\widetilde{P}}_0(-x)\), notice that

$$\begin{aligned} {\mathcal {K}}(t,y_1-y_2)\equiv {\mathbb {E}}\left[ u_0(t,y_1) {\widetilde{P}}_0u_0^*(t,y_2)\right]&=\int {\widetilde{P}}_0(y_2-z){\mathcal {C}}_{u_0}(t,y_1-z)dz\nonumber \\&=-{\mathbb {E}}\left[ u_0^*(t,y_2) {\widetilde{P}}_0u_0(t,y_1)\right] \nonumber \\&=-{\mathcal {K}}^*(t,y_2-y_1) \end{aligned}$$
(78)

and we obtain

$$\begin{aligned} {\mathbb {E}}\left[ \left| v_{H,\gamma }(t,x)\right| ^2\right] = \int e^{2i\pi ky}\frac{1}{|k|_{1/L}^{2H+1}}\left[ {\mathcal {C}}_{u_0}(t,y)-\gamma ^2 {\mathcal {K}}^2(t,y)\right] e^{\gamma ^2\mathcal C_{{\widetilde{v}}_0}(t,y)}dkdy. \end{aligned}$$
(79)

Remark now that

$$\begin{aligned} \int _0^{+\infty }(P_H\star P_H)'(y)e^{\gamma ^2{\mathcal {C}}_{{\widetilde{v}}_0}(t,y)}dy =&-(P_H\star P_H)(0)e^{\gamma ^2{\mathcal {C}}_{{\widetilde{v}}_0}(t,0)} \nonumber \\&- \int _0^{+\infty }(P_H\star P_H)(y)\gamma ^2\mathcal C'_{{\widetilde{v}}_0}(t,y)e^{\gamma ^2\mathcal C_{{\widetilde{v}}_0}(t,y)}dy, \end{aligned}$$
(80)

where we have introduced the correlation product \(\star \), defined by, for any appropriate real functions f and g,

$$\begin{aligned} (f\star g)(y)=\int f(x)g(x+y)dx = \int e^{2i\pi ky} {\widehat{f}}^*(k){\widehat{g}}(k)dk, \end{aligned}$$
(81)

such that

$$\begin{aligned}&{\mathbb {E}}\left[ \left| v_{H,\gamma }(t,x)\right| ^2\right] + \frac{{\mathcal {C}}_f(0)}{2|c|}\int _0^{+\infty }(P_H\star P_H)'(y)e^{\gamma ^2{\mathcal {C}}_{{\widetilde{v}}_0}(t,y)}dy \end{aligned}$$
(82)
$$\begin{aligned}&\quad =\int (P_H\star P_H)(y) {\mathcal {C}}_{u_0}(t,y) e^{\gamma ^2{\mathcal {C}}_{{\widetilde{v}}_0}(t,y)}dy -\frac{{\mathcal {C}}_f(0)}{2|c|}(P_H\star P_H)(0)e^{\gamma ^2{\mathcal {C}}_{{\widetilde{v}}_0}(t,0)} \end{aligned}$$
(83)
$$\begin{aligned}&\qquad -\gamma ^2 \int (P_H\star P_H)(y) \left[ \mathcal K^2(t,y)+\frac{{\mathcal {C}}_f(0)}{4|c|}\mathcal C'_{{\widetilde{v}}_0}(t,|y|)\right] e^{\gamma ^2\mathcal C_{{\widetilde{v}}_0}(t,y)}dy. \end{aligned}$$
(84)

Recall that \({\mathcal {C}}_{u_0}(t,y) \) behaves as a Dirac function as \(t\rightarrow \infty \), weighted by an appropriate factor, as is stated in Eq. (16). Hence, it is clear that the contribution given in Eq. (83) will vanish as \(t\rightarrow \infty \). Similarly, in the same limit, the function \({\mathcal {K}}(t,y)\) (Eq. 78) converges towards \({\widetilde{P}}_0(-y)\), again weighted by an appropriate factor, such that, using the asymptotic expression of \({\mathcal {C}}_{{\widetilde{v}}_0}\) (Eq. 28), we obtain pointwise

$$\begin{aligned} \lim _{t\rightarrow \infty } \left[ {\mathcal {K}}^2(t,y)+\frac{\mathcal C_f(0)}{4|c|}{\mathcal {C}}'_{{\widetilde{v}}_0}(t,|y|)\right] =\frac{\mathcal {C}^2_f(0)}{4|c|^2}\left[ {\widetilde{P}}_0^2(y)-|\ln _+'(|y|)| \right] +\frac{{\mathcal {C}}_f(0)}{4|c|}{\widetilde{h}}'(|y|), \end{aligned}$$
(85)

where we have denoted by \(|\ln _+'(|y|)| \) the derivative of the smoothly-truncaded logarithm \(\ln _+\) evaluated at |y|, that is expected to behave as 1/|y| in the vicinity of the origin. \(\square \)

Let us focus on the second contribution displayed in Eq. (84). As we have already observed, the function \((P_H\star P_H)(y)\) is a bounded function of its argument for any \(H>0\), and its rapid decrease away from the origin ensures integrability when the dummy variable y goes towards infinite values. Notice that

$$\begin{aligned} {\widetilde{P}}_0(y) =-i \int e^{2i\pi ky}\frac{k}{|k|^{3/2}_{1/L}}dk\mathrel {\mathop {\sim }\limits _{y\rightarrow 0}^{}}\frac{y}{|y|^{3/2}}, \end{aligned}$$
(86)

which says that the first term of the RHS of Eq. (85) grows at most logarithmically near the origin, which is integrable. Thus, the integral entering in Eq. (84) exists as \(t\rightarrow \infty \) if the remaining singular term, i.e. \(|y|^{-\gamma ^2{\mathcal {C}}_f(0)/|c|}\), is integrable, i.e. \(\gamma ^2<|c|/{\mathcal {C}}_f(0)\).

To conclude, concerning the limit at large time of the variance \({\mathbb {E}}\left[ \left| v_{H,\gamma }(t,x)\right| ^2\right] \), let us examine the second term of the LHS of Eq. (82). It is easy to see that near the origin, whereas \((P_H\star P_H)(y)\) remains bounded for any \(H>0\), its derivative will behave as \((P_H\star P_H)'(y)\sim y^{2H-1}\). Thus, as \(t\rightarrow \infty \), this contribution is finite for \(2H-1-\gamma ^2{\mathcal {C}}_f(0)/|c|>-1\), i.e. \(\gamma ^2<2H|c|/{\mathcal {C}}_f(0)\). Hence, for \(\gamma ^2<\min (1,2H)|c|/{\mathcal {C}}_f(0)\), the variance is finite and its expression is given by

$$\begin{aligned}&\lim _{t\rightarrow \infty }{\mathbb {E}}\left[ \left| v_{H,\gamma }(t,x)\right| ^2\right] =- \frac{{\mathcal {C}}_f(0)}{2|c|}\int _0^{+\infty }(P_H\star P_H)'(y)\left| \frac{L}{y}\right| _+^{\gamma ^2\frac{{\mathcal {C}}_f(0)}{|c|}}e^{\gamma ^2{\widetilde{h}}(y)}dy\nonumber \\&\quad -\gamma ^2\frac{{\mathcal {C}}_f(0)}{4|c|} \int (P_H\star P_H)(y) \left[ \frac{{\mathcal {C}}_f(0)}{|c|}\left[ {\widetilde{P}}_0^2(y)-|\ln _+'(|y|)| \right] +{\widetilde{h}}'(|y|)\right] \left| \frac{L}{y}\right| _+^{\gamma ^2\frac{\mathcal C_f(0)}{|c|}}e^{\gamma ^2{\widetilde{h}}(y)}dy, \end{aligned}$$
(87)

where the notation \(|y|_+=\exp \left( \ln _+|y|\right) \) is introduced.

To see the behavior at small scales of the second-order structure function, consider the function

$$\begin{aligned} {\mathcal {P}}_{H,\ell }(x)=P_{H}(x+\ell )-P_{H}(x)=\int e^{2i\pi kx}\frac{e^{2i\pi k\ell }-1}{|k|_{1/L}^{H+1/2}}dk, \end{aligned}$$
(88)

such that we can conveniently write the velocity increment as

$$\begin{aligned} \delta _\ell v_{H,\gamma }(t,x)=\int {\mathcal {P}}_{H,\ell }(x-y)e^{\gamma {\widetilde{P}}_0u_0(t,y)} u_0(t,y)dy. \end{aligned}$$
(89)

Previous calculations concerning the variance apply and we get

$$\begin{aligned}&\lim _{t\rightarrow \infty }{\mathbb {E}}\left[ \left| \delta _\ell v_{H,\gamma }(t,x)\right| ^2\right] =- \frac{{\mathcal {C}}_f(0)}{2|c|}\int _0^{+\infty }( {\mathcal {P}}_{H,\ell }\star {\mathcal {P}}_{H,\ell })'(y)\left| \frac{L}{y}\right| _+^{\gamma ^2\frac{{\mathcal {C}}_f(0)}{|c|}}e^{\gamma ^2{\widetilde{h}}(y)}dy\nonumber \\&\quad -\gamma ^2\frac{{\mathcal {C}}_f(0)}{4|c|} \int ( \mathcal P_{H,\ell }\star {\mathcal {P}}_{H,\ell })(y) \left[ \frac{\mathcal C_f(0)}{|c|}\left[ {\widetilde{P}}_0^2(y)-|\ln _+'(|y|)| \right] +{\widetilde{h}}'(|y|)\right] \left| \frac{L}{y}\right| _+^{\gamma ^2\frac{\mathcal C_f(0)}{|c|}}e^{\gamma ^2{\widetilde{h}}(y)}dy. \end{aligned}$$
(90)

Notice that

$$\begin{aligned} ( {\mathcal {P}}_{H,\ell }\star {\mathcal {P}}_{H,\ell })(y)=\int e^{2i\pi ky}\frac{\left| e^{2i\pi k\ell }-1\right| ^2}{|k|_{1/L}^{2H+1}}dk, \end{aligned}$$
(91)

such that

$$\begin{aligned} ( {\mathcal {P}}_{H,\ell }\star {\mathcal {P}}_{H,\ell })(\ell y)\mathrel {\mathop {\sim }\limits _{\ell \rightarrow 0^+}^{}}\ell ^{2H}\int e^{2i\pi ky}\frac{\left| e^{2i\pi k}-1\right| ^2}{|k|^{2H+1}}dk, \end{aligned}$$
(92)

this equivalence at small scales making sense only for \(H\in ]0, 1[\). Similarly, we have

$$\begin{aligned} ( {\mathcal {P}}_{H,\ell }\star {\mathcal {P}}_{H,\ell })'(\ell y)\mathrel {\mathop {\sim }\limits _{\ell \rightarrow 0^+}^{}}\ell ^{2H-1}g_H(y), \end{aligned}$$
(93)

where

$$\begin{aligned} g_H(y)=\int 2i\pi k e^{2i\pi ky}\frac{\left| e^{2i\pi k}-1\right| ^2}{|k|^{2H+1}}dk. \end{aligned}$$
(94)

Once having rescaled the dummy variable y entering in the integrals at the RHS of Eq. (90), we can see that the first term will be order \(\ell ^{2H-\gamma ^2\mathcal C_f(0)/|c|}\), and thus will dominate the second term that goes to zero as \(\ell ^{2H+1-\gamma ^2{\mathcal {C}}_f(0)/|c|}\). Doing so, we get the equivalent behavior of the second-order structure function at small scales, which reads

$$\begin{aligned} \lim _{t\rightarrow \infty }{\mathbb {E}}\left[ \left| \delta _\ell v_{H,\gamma }(t,x)\right| ^2\right] \mathrel {\mathop {\sim }\limits _{\ell \rightarrow 0^+}^{}}- \frac{\mathcal C_f(0)}{2|c|}\ell ^{2H}\left( \frac{\ell }{L}\right) ^{-\gamma ^2\frac{\mathcal C_f(0)}{|c|}}e^{\gamma ^2{\widetilde{h}}(0)}\int _0^{+\infty }\frac{g_H(y)}{|y|^{\gamma ^2\frac{\mathcal C_f(0)}{|c|}}}dy. \end{aligned}$$
(95)

It remains to determine the range of parameters such that the equivalence given in Eq. (95) makes sense, and hence check the integrability of the remaining integral that enters in it. Although the behavior of the function \(g_H\) defined in Eq. (94) at small and large arguments can be tricky to establish, its integrability is pretty much straightforward. Indeed, with notation \(a=\gamma ^2\frac{{\mathcal {C}}_f(0)}{|c|}\), using the equality

$$\begin{aligned} \int _0^{+\infty }\frac{g_H(y)}{|y|^{a}}dy=- (2\pi )^{a}\Gamma \left( 1 - a\right) \cos \left( \frac{a\pi }{2}\right) \int \frac{\left| e^{2i\pi k}-1\right| ^2}{|k|^{2H+1-a}}dk, \end{aligned}$$

it is clear that the equivalent (Eq. 95) makes sense for \(H\in ]0,1[\) and \(\gamma ^2\frac{{\mathcal {C}}_f(0)}{|c|}<\min (1,2H)\), and is indeed positive. As a further check, we can note that the expression (Eq. 95) indeed coincides with the equivalence obtained for fractional Gaussian fields (Eq. 22) when \(\gamma =0\).

Let us now calculate the third order structure function. We have, making use of the definition and symmetries of the function \({\mathcal {K}}\) (Eq. 78),

$$\begin{aligned}&{\mathbb {E}}\left[ u_0(t,y_1) u_0^*(t,y_2)u_0(t,y_3)e^{\gamma \left( {\widetilde{P}}_0u_0(t,y_1)+{\widetilde{P}}_0u_0^*(t,y_2)+{\widetilde{P}}_0u_0(t,y_3)\right) }\right] \nonumber \\&\quad ={\mathcal {C}}_{u_0}(t,y_1-y_2){\mathbb {E}}\left[ u_0(t,y_3)e^{\gamma \left( {\widetilde{P}}_0u_0(t,y_1)+{\widetilde{P}}_0u_0^*(t,y_2)+{\widetilde{P}}_0u_0(t,y_3)\right) }\right] \nonumber \\&\qquad +\gamma {\mathcal {K}}(t,y_1-y_2){\mathbb {E}}\left[ u_0^*(t,y_2)u_0(t,y_3)e^{\gamma \left( {\widetilde{P}}_0u_0(t,y_1)+{\widetilde{P}}_0u_0^*(t,y_2)+{\widetilde{P}}_0u_0(t,y_3)\right) }\right] \nonumber \\&\quad ={\mathcal {C}}_{u_0}(t,y_1-y_2)\left[ \gamma {\mathcal {K}}(t,y_3-y_2)e^{\gamma ^2\left[ {\mathcal {C}}_{{\widetilde{v}}_0}(t,y_1-y_2)+{\mathcal {C}}_{{\widetilde{v}}_0}(t,y_3-y_2)\right] }\right] \nonumber \\&\qquad +\gamma {\mathcal {K}}(t,y_1-y_2)\left[ {\mathcal {C}}_{u_0}(t,y_3-y_2)+\gamma ^2\left[ {\mathcal {K}}^*(t,y_2-y_1)+{\mathcal {K}}^*(t,y_2-y_3)\right] {\mathcal {K}}(t,y_3-y_2)\right] \nonumber \\&\qquad \times e^{\gamma ^2\left[ {\mathcal {C}}_{{\widetilde{v}}_0}(t,y_1-y_2)+{\mathcal {C}}_{{\widetilde{v}}_0}(t,y_3-y_2)\right] } \nonumber \\&\quad =\gamma \left[ {\mathcal {C}}_{u_0}(t,y_1-y_2){\mathcal {K}}(t,y_3-y_2)+{\mathcal {C}}_{u_0}(t,y_3-y_2){\mathcal {K}}(t,y_1-y_2)\right] e^{\gamma ^2\left[ {\mathcal {C}}_{{\widetilde{v}}_0}(t,y_1-y_2)+{\mathcal {C}}_{{\widetilde{v}}_0}(t,y_3-y_2)\right] }\nonumber \\&\qquad -\gamma ^3{\mathcal {K}}(t,y_1-y_2)\left[ {\mathcal {K}}(t,y_1-y_2)+\mathcal K(t,y_3-y_2)\right] {\mathcal {K}}(t,y_3-y_2) e^{\gamma ^2\left[ \mathcal C_{{\widetilde{v}}_0}(t,y_1-y_2)+\mathcal C_{{\widetilde{v}}_0}(t,y_3-y_2)\right] }, \end{aligned}$$
(96)

such that

$$\begin{aligned} {\mathbb {E}}\left[ \delta _\ell v_{H,\gamma }|\delta _\ell v_{H,\gamma }|^2\right]&=2\gamma \int {\mathcal {P}}_{H,\ell }(y_2-z_1) {\mathcal {P}}_{H,\ell }(y_2) {\mathcal {P}}_{H,\ell }(y_2-z_3) \\&\times \left[ {\mathcal {C}}_{u_0}(t,z_1)-\gamma ^2\mathcal K^2(t,z_1)\right] {\mathcal {K}}(t,z_3)e^{\gamma ^2\left[ \mathcal C_{{\widetilde{v}}_0}(t,z_1)+{\mathcal {C}}_{{\widetilde{v}}_0}(t,z_3)\right] }dz_1 dy_2 dz_3. \end{aligned}$$

Let us introduce the following function

$$\begin{aligned} h_{H,\ell }(z_1,z_3)&=\int {\mathcal {P}}_{H,\ell }(y_2-z_1) {\mathcal {P}}_{H,\ell }(y_2) {\mathcal {P}}_{H,\ell }(y_2-z_3) dy_2\\&=\int e^{-2i\pi (k_1z_1+k_3z_3)} \frac{\left( e^{2i\pi k_1\ell }-1\right) \left( e^{-2i\pi (k_1+k_3)\ell }-1\right) \left( e^{2i\pi k_3\ell }-1\right) }{|k_1|_{1/L}^{H+1/2}|k_1+k_3|_{1/L}^{H+1/2}|k_3|_{1/L}^{H+1/2}}dk_1dk_3\\&=-h_{H,\ell }(-z_1,-z_3), \end{aligned}$$

such that

$$\begin{aligned}&{\mathbb {E}}\left[ \delta _\ell v_{H,\gamma }|\delta _\ell v_{H,\gamma }|^2\right] =\nonumber \\&\quad 2\gamma \int h_{H,\ell }(z_1,z_3) \left[ \mathcal C_{u_0}(t,z_1)-\gamma ^2{\mathcal {K}}^2(t,z_1)\right] \mathcal K(t,z_3)e^{\gamma ^2\left[ {\mathcal {C}}_{{\widetilde{v}}_0}(t,z_1)+\mathcal C_{{\widetilde{v}}_0}(t,z_3)\right] }dz_1dz_3. \end{aligned}$$
(97)

Using the same ideas to determine the limiting value as \(t\rightarrow \infty \) of the variance (Eq. 79), remark that

$$\begin{aligned} \int _0^{+\infty } \partial _{z_1}h_{H,\ell }(z_1,z_3)e^{\gamma ^2{\mathcal {C}}_{{\widetilde{v}}_0}(t,z_1)}dz_1 =&-h_{H,\ell }(0,z_3)e^{\gamma ^2{\mathcal {C}}_{{\widetilde{v}}_0}(t,0)} \nonumber \\&- \int _0^{+\infty }h_{H,\ell }(z_1,z_3)\gamma ^2\mathcal C'_{{\widetilde{v}}_0}(t,z_1)e^{\gamma ^2\mathcal C_{{\widetilde{v}}_0}(t,z_1)}dz_1, \end{aligned}$$
(98)

as we obtained in Eq. (80). Doing so, we determine the proper quantity that eventually dominates at small scales, and we obtain

$$\begin{aligned} \lim _{t\rightarrow \infty }{\mathbb {E}}\left[ \delta _\ell v_{H,\gamma }|\delta _\ell v_{H,\gamma }|^2\right]&\mathrel {\mathop {\sim }\limits _{\ell \rightarrow 0^+}^{}}\gamma \frac{{\mathcal {C}}^2_f(0)}{2|c|^2}\ell ^{3H}\left( \frac{\ell }{L}\right) ^{-2\gamma ^2\frac{{\mathcal {C}}_f(0)}{|c|}}e^{2\gamma ^2{\widetilde{h}}(0)} \\&\times \int _{(z_1,z_3)\in {\mathbb {R}}^+\times {\mathbb {R}}}g_H(z_1,z_3)\frac{1}{|z_1|^{\frac{\gamma ^2\mathcal C_f(0)}{|c|}}}\frac{z_3}{|z_3|^{\frac{3}{2}+\frac{\gamma ^2\mathcal C_f(0)}{|c|}}}dz_1dz_3, \end{aligned}$$

where we have introduced the function

$$\begin{aligned} g_H(z_1,z_3)=-2i\pi \int e^{-2i\pi (k_1z_1+k_3z_3)} \frac{k_1\left( e^{2i\pi k_1}-1\right) \left( e^{-2i\pi (k_1+k_3)}-1\right) \left( e^{2i\pi k_3}-1\right) }{|k_1|^{H+1/2}|k_1+k_3|^{H+1/2}|k_3|^{H+1/2}}dk_1dk_3.\nonumber \\ \end{aligned}$$
(99)

Additionally, we will need the following exact Fourier transforms,

$$\begin{aligned} \int e^{-2i\pi k_1z_1} \frac{1_{z_1\ge 0}}{|z_1|^a}dz_1 =(2\pi )^{a-1} \Gamma (1 - a) \left[ \sin (a \pi /2) -i\cos (a \pi /2)\frac{k_1}{|k_1|}\right] \frac{1}{|k_1|^{1-a}}, \end{aligned}$$
(100)

for \(0<a<1\), and

$$\begin{aligned} \int e^{-2i\pi k_3z_3} \frac{z_3}{|z_3|^{\frac{3}{2}+a}}dz_3 =-i (2 \pi )^{a+1/2} \frac{1/4 + a/2 }{\Gamma (a+3/2)\sin (\pi (a/2+1/4))} \frac{k_3}{|k_3|^{3/2 - a}},\nonumber \\ \end{aligned}$$
(101)

for \(0<a<3/2\), and the identity

$$\begin{aligned} \left( e^{2i\pi k_1}-1\right) \left( e^{-2i\pi (k_1+k_3)}-1\right)&\left( e^{2i\pi k_3}-1\right) \\&=-2i\left[ \sin \left( 2\pi (k_1+k_3)\right) -\sin (2\pi k_1)-\sin (2\pi k_3)\right] . \end{aligned}$$

Using symmetries, it can be shown that the real part of Eq. (100) does not contribute, only remaining

$$\begin{aligned}&\int _{(z_1,z_3)\in {\mathbb {R}}^+\times {\mathbb {R}}}g_H(z_1,z_3)\frac{1}{|z_1|^{\frac{\gamma ^2{\mathcal {C}}_f(0)}{|c|}}} \frac{z_3}{|z_3|^{\frac{3}{2}+\frac{\gamma ^2{\mathcal {C}}_f(0)}{|c|}}}dz_1dz_3\nonumber \\&\quad =4\pi A_\gamma \int \frac{k_3\left[ \sin \left( 2\pi (k_1+k_3)\right) -\sin (2\pi k_1)-\sin (2\pi k_3)\right] }{|k_1|^{H+1/2-\frac{\gamma ^2\mathcal C_f(0)}{|c|}}|k_1+k_3|^{H+1/2}|k_3|^{H+2-\frac{\gamma ^2\mathcal C_f(0)}{|c|}}}dk_1dk_3, \end{aligned}$$
(102)

with \(A_\gamma \in {\mathbb {R}}\) a real multiplicative constant that can be obtained from the multiplicative contributions displayed in Eqs. (100) and  (101). The sign of the remaining contribution of the RHS of Eq. (102) expressed as a double integral over the dummy variables \(k_1\) and \(k_3\) is not obvious, neither whether it vanishes or not. Nonetheless, it gives a condition on \(\gamma \), to ensure its finiteness. Inspecting the integrability properties of this term, we find that the integral exists along the diagonal \(k_1=k_3\) if

$$\begin{aligned} \frac{\gamma ^2{\mathcal {C}}_f(0)}{|c|}<\min (1,3H/2). \end{aligned}$$
(103)

Doing so, we have thus shown that, under the condition provided in Eq. (103), the third-order moment of the increments of the process \(v_{H,\gamma }\), as it is defined in Eq. (97), is finite, and does not vanish in an obvious manner. It is furthermore real, and it behaves at small scale as

$$\begin{aligned} \lim _{t\rightarrow \infty }{\mathbb {E}}\left[ \delta _\ell v_{H,\gamma }|\delta _\ell v_{H,\gamma }|^2\right]&\mathrel {\mathop {\sim }\limits _{\ell \rightarrow 0^+}^{}}d_{H,\gamma }\ell ^{3H}\left( \frac{\ell }{L}\right) ^{-2\gamma ^2\frac{\mathcal C_f(0)}{|c|}} \end{aligned}$$

with

$$\begin{aligned} d_{H,\gamma }=\gamma \frac{\mathcal C^2_f(0)}{2|c|^2}e^{2\gamma ^2{\widetilde{h}}(0)} \int _{(z_1,z_3)\in {\mathbb {R}}^+\times {\mathbb {R}}}g_H(z_1,z_3)\frac{1}{|z_1|^{\frac{\gamma ^2\mathcal C_f(0)}{|c|}}}\frac{z_3}{|z_3|^{\frac{3}{2}+\frac{\gamma ^2\mathcal C_f(0)}{|c|}}}dz_1dz_3, \end{aligned}$$
(104)

where the function \(g_H(z_1,z_3)\) is defined in Eq. (99).

Let us finally determine the behavior at small scales of the statistics at high-order considering \(q\in {\mathbb {N}}^*\),

$$\begin{aligned} {\mathbb {E}}\left[ |\delta _\ell v_{H,\gamma }|^{2q}\right]&=\int \prod _{i=1}^q {\mathcal {P}}_{H,\ell }(x-y_i){\mathcal {P}}_{H,\ell }(x-z_i)\prod _{i=1}^q dy_idz_i\nonumber \\&\times {\mathbb {E}}\left[ \prod _{i=1}^q u_0(t,y_i) u_0^*(t,z_i)e^{\gamma \sum _{i=1}^q{\widetilde{P}}_0u_0(t,y_i)+{\widetilde{P}}_0u_0^*(t,z_i)}\right] , \end{aligned}$$
(105)

where the operator \({\mathcal {P}}_{H,\ell }\) is defined in Eq. (88). The determination of the exact expression of the correlator entering in Eq. (105) can be done using some combinatorial analysis, although it can become cumbersome. Instead, in a first approach, let us evaluate the spectrum of exponents that governs the decrease towards 0 as \(\ell \rightarrow 0\). In particular, intermittent corrections are eventually governed by a term of the form

$$\begin{aligned} {\mathbb {E}}\left[ e^{\gamma \sum _{i=1}^q{\widetilde{P}}_0u_0(t,y_i)+{\widetilde{P}}_0u_0^*(t,z_i)}\right] = e^{\gamma ^2\left[ \sum _{i=1}^q{\mathcal {C}}_{{\widetilde{v}}_0}(t,y_i-z_i)+ \sum _{i<j=1}^q{\mathcal {C}}_{{\widetilde{v}}_0}(t,y_i-z_j) +{\mathcal {C}}^*_{{\widetilde{v}}_0}(t,y_j-z_i)\right] }, \end{aligned}$$

contributing at small scales as

$$\begin{aligned} \lim _{t\rightarrow \infty } {\mathbb {E}}\left[ e^{\gamma \sum _{i=1}^q{\widetilde{P}}_0u_0(t,\ell y_i)+{\widetilde{P}}_0u_0^*(t,\ell z_i)}\right]&\mathrel {\mathop {\sim }\limits _{\ell \rightarrow 0^+}^{}}\left( \frac{\ell }{L}\right) ^{-q^2\gamma ^2\frac{{\mathcal {C}}_f(0)}{|c|}}e^{q^2\gamma ^2{\widetilde{h}}(0)} \\&\times \prod _{i=1}^q \frac{1}{|y_i-z_i|^{\gamma ^2\frac{\mathcal C_f(0)}{|c|}}} \prod _{i<j=1}^q \frac{1}{|(y_i-z_j)(y_j-z_i)|^{\gamma ^2\frac{\mathcal C_f(0)}{|c|}}}, \end{aligned}$$

whereas contributions from the fractional part will be of the order of \(\ell ^{2qH}\). Once again, the determination of the appropriate range of values for \(\gamma \) is tricky to get at this stage because we have to compute in an exact fashion the expectation entering in the RHS of Eq. (105). To do so, we have to generalize the calculations made in Eqs. (77) and (96), using combinatorial developments such as those proposed in Ref. [52] (see their Lemma 2.2). Such a calculation is beyond the scope of the present article. We nonetheless expect the additional condition \(\gamma ^2\frac{\mathcal C_f(0)}{|c|}<2H/q\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apolinário, G.B., Chevillard, L. & Mourrat, JC. Dynamical Fractional and Multifractal Fields. J Stat Phys 186, 15 (2022). https://doi.org/10.1007/s10955-021-02867-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02867-2

Keywords

Mathematics Subject Classification

Navigation