Skip to main content
Log in

Lyapunov Exponents of the Half-Line SHE

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the half-line stochastic heat equation (SHE) with Robin boundary parameter \(A = -\frac{1}{2}\). Under narrow wedge initial condition, we compute every positive (including non-integer) Lyapunov exponents of the half-line SHE. As a consequence, we prove a large deviation principle for the upper tail of the half-line KPZ equation under Neumann boundary parameter \(A = -\frac{1}{2}\) with rate function \(\Phi _+^{\text {hf}} (s) = \frac{2}{3} s^{\frac{3}{2}}\). This confirms the prediction of [44, 52] for the upper tail exponent of the half-line KPZ equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is a misstatement in page 4 of [27] where an extra L! appears in the definition of Fredholm determinant.

References

  1. Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1+ 1 dimensions. Commun. Pure Appl. Math. 64(4), 466–537 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, vol. 118. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  3. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55. US Government printing office, Washington DC (1948)

    MATH  Google Scholar 

  4. Borodin, A., Bufetov, A., Corwin, I.: Directed random polymers via nested contour integrals. Ann. Phys. 368, 191–247 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Barraquand, G., Borodin, A., Corwin, I.: Half-Space Macdonald Processes. In Forum of Mathematics, vol. 8. Cambridge University Press, Cambridge (2020)

    MATH  Google Scholar 

  6. Baik, J., Barraquand, G., Corwin, I., Suidan, T.: Pfaffian Schur processes and last passage percolation in a half-quadrant. Ann. Probab. 46(6), 3015–3089 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Barraquand, G., Borodin, A., Corwin, I., Wheeler, M.: Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process. Duke Math. J. 167(13), 2457–2529 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Bertini, L., Cancrini, N.: The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat. Phys. 78(5–6), 1377–1401 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158(1–2), 225–400 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Balan, R.M., Conus, D.: Intermittency for the wave and heat equations with fractional noise in time. Ann. Probab. 44(2), 1488–1534 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Dan, B., Ferrari, P.L., Occelli, A.: Stationary half-space last passage percolation. Commun. Math. Phys. (2020). https://doi.org/10.1007/s00220-020-03712-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Borodin, A., Gorin, V.: Moments match between the kpz equation and the airy point process. SIGMA 12, 102 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Basu, R., Ganguly, S., Sly, A.: Upper tail large deviations in first passage percolation. arXiv:1712.01255. (2017)

  14. Barraquand, G., Krajenbrink, A., Doussal, P.L.: Half-space stationary kardar-parisi-zhang equation. arXiv:2003.03809. (2020)

  15. Baik, J., Rains, E.M.: The asymptotics of monotone subsequences of involutions. Duke Math. J. 109(2), 205–281 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Cafasso, M., Claeys, T.: A Riemann-Hilbert approach to the lower tail of the KPZ equation. arXiv:1910.02493. (2019)

  17. Carmona, R., Carmona, R.A., Molchanov, S.A.: Parabolic Anderson problem and intermittency, vol. 518. American Mathematical Soc, Providence (1994)

    MATH  Google Scholar 

  18. Chen, L., Dalang, R.C.: Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions. Ann. Probab. 43(6), 3006–3051 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Corwin, I., Ghosal, P.: KPZ equation tails for general initial data. Electron. J. Probab. 25, 40 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Corwin, I., Ghosal, P.: Lower tail of the KPZ equation. Duke Math. J. 169(7), 1329–1395 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Chen, X.: Precise intermittency for the parabolic Anderson equation with an \((1+ 1) \)-dimensional time-space white noise. Annales de l’IHP Probabilités et statistiques 51(4), 1486–1499 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Conus, D., Joseph, M., Khoshnevisan, D.: On the chaotic character of the stochastic heat equation, before the onset of intermittency. Ann. Probab. 41(3B), 2225–2260 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Conus, D., Joseph, M., Khoshnevisan, D., Shiu, S.-Y.: On the chaotic character of the stochastic heat equation. II. Probab. Theory Relat. Fields 156(3–4), 483–533 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices 1(01), 1130001 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Corwin, I., Shen, H.: Open ASEP in the weakly asymmetric regime. Commun. Pure Appl. Math. 71(10), 2065–2128 (2018)

    MathSciNet  MATH  Google Scholar 

  26. De Nardis, J., Krajenbrink, A., Doussal, P.Le, Thiery, T.: Delta-Bose gas on a half-line and the KPZ equation: boundary bound states and unbinding transitions. arXiv:1911.06133. (2019)

  27. Das, S., Tsai, L.-C.: Fractional moments of the Stochastic Heat Equation. arXiv:1910.09271. (2019)

  28. Ferrari, P.L.: Polynuclear growth on a flat substrate and edge scaling of GOE eigenvalues. Commun. Math. Phys. 252(1–3), 77–109 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Foondun, M., Khoshnevisan, D.: Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14, 548–568 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Ferrari, P.L., Vető, B.: Upper tail decay of kpz models with brownian initial conditions. Electro. Commun. Probab. 26, 1–14 (2021)

    MathSciNet  Google Scholar 

  31. Gerencsér, M., Hairer, M.: Singular SPDEs in domains with boundaries. Probab. Theory Relat. Fields 173(3–4), 697–758 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Ghosal, P.: Moments of the SHE under delta initial measure. arXiv:1808.04353. (2018)

  33. Gärtner, J., König, W., Molchanov, S.: Geometric characterization of intermittency in the parabolic Anderson model. Ann. Probab. 35(2), 439–499 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Ghosal, P., Lin, Y.: Lyapunov exponents of the SHE for general initial data. arXiv:2007.06505. (2020)

  35. Gueudré, T., Le Doussal, P.: Directed polymer near a hard wall and KPZ equation in the half-space. EPL (Europhys. Lett.) 100(2), 26006 (2012)

    ADS  Google Scholar 

  36. Gärtner, J., Molchanov, S.A.: Parabolic problems for the Anderson model. Commun. Math. Phys. 132(3), 613–655 (1990)

    ADS  MATH  Google Scholar 

  37. Gonçalves, P., Perkowski, N., Simon, M.: Derivation of the stochastic Burgers equation with Dirichlet boundary conditions from the WASEP (2017)

  38. Kardar, M.: Depinning by quenched randomness. Phys. Rev. Lett. 55(21), 2235 (1985)

    ADS  Google Scholar 

  39. Kardar, M.: Replica bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nucl. Phys. B 290, 582–602 (1987)

    ADS  MathSciNet  Google Scholar 

  40. Kim, Y.H.: The lower tail of the half-space KPZ equation. arXiv:1905.07703. (2019)

  41. Kolokolov, I.V., Korshunov, S.E.: Optimal fluctuation approach to a directed polymer in a random medium. Phys. Rev. B 75(14), 140201 (2007)

    ADS  Google Scholar 

  42. Kolokolov, I.V., Korshunov, S.E.: Explicit solution of the optimal fluctuation problem for an elastic string in a random medium. Phys. Rev. E 80(3), 031107 (2009)

    ADS  Google Scholar 

  43. Khoshnevisan, D., Kim, K., Xiao, Y.: Intermittency and multifractality: A case study via parabolic stochastic pdes. Ann. Probab. 45(6A), 3697–3751 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Krajenbrink, A., Le Doussal, P.: Large fluctuations of the KPZ equation in a half-space. SciPost Phys. 5, 032 (2018)

    ADS  Google Scholar 

  45. Krajenbrink, A., Le Doussal, P.: Replica Bethe Ansatz solution to the Kardar-Parisi-Zhang equation on the half-line. SciPost Phys. 8, 035 (2020)

    ADS  MathSciNet  Google Scholar 

  46. Kamenev, A., Meerson, B., Sasorov, P.V.: Short-time height distribution in the one-dimensional kardar-parisi-zhang equation: starting from a parabola. Phys. Rev. E 94(3), 032108 (2016)

    ADS  MathSciNet  Google Scholar 

  47. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889 (1986)

    ADS  MATH  Google Scholar 

  48. Le Doussal, P., Majumdar, S.N., Rosso, A., Schehr, G.: Exact short-time height distribution in the one-dimensional kardar-parisi-zhang equation and edge fermions at high temperature. Phys. Rev. Lett. 117, 070403 (2016)

    Google Scholar 

  49. Le Doussal, P., Majumdar, S.N., Schehr, G.: Large deviations for the height in 1D Kardar-Parisi-Zhang growth at late times. EPL (Europhys. Lett.) 113(6), 60004 (2016)

    Google Scholar 

  50. Meerson, B., Katzav, E., Vilenkin, A.: Large deviations of surface height in the kardar-parisi-zhang equation. Phys. Rev. Lett. 116(7), 070601 (2016)

    ADS  MathSciNet  Google Scholar 

  51. Meerson, B., Schmidt, J.: Height distribution tails in the Kardar-Parisi-Zhang equation with Brownian initial conditions. J. Stat. Mech: Theory Exp. 2017(10), 103207 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Meerson, B., Vilenkin, A.: Large fluctuations of a Kardar-Parisi-Zhang interface on a half line. Phys. Rev. E 98(3), 032145 (2018)

    ADS  Google Scholar 

  53. Olver, F.: Asymptotics and Special Functions. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  54. Parekh, S.: Positive random walks and an identity for half-space SPDEs. arXiv:1901.09449. (2019)

  55. Parekh, S.: The KPZ limit of ASEP with boundary. Commun. Math. Phys. 365(2), 569–649 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Rains, E. M.: Correlation functions for symmetrized increasing subsequences. arXiv:math/0006097. (2000)

  57. Sasamoto, T., Imamura, T.: Fluctuations of the one-dimensional polynuclear growth model in half-space. J. Stat. Phys. 115(3–4), 749–803 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Sasorov, P., Meerson, B., Prolhac, S.: Large deviations of surface height in the 1+ 1-dimensional Kardar-Parisi-Zhang equation: exact long-time results for \(\lambda H< 0\). J. Stat. Mech: Theory Exp. 2017(6), 063203 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Tsai, L.-C.: Exact lower tail large deviations of the KPZ equation. arXiv:1809.03410. (2018)

  60. Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177(3), 727–754 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Tracy, C.A., Widom, H.: The distributions of random matrix theory and their applications In New trends in mathematical physics, pp. 753–765. Springer, New York (2009)

    MATH  Google Scholar 

  62. Wu, X.: Intermediate disorder regime for half-space directed polymers. arXiv:1804.09815. (2018)

Download references

Acknowledgements

The author thanks Guillaume Barraquand, Ivan Corwin, Sayan Das, Yujin Kim and Li-Cheng Tsai for helpful discussions. The author was partially supported by the Fernholz Foundation’s “Summer Minerva Fellow” program and also received summer support from Ivan Corwin’s NSF grant DMS-1811143, DMS-1664650.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yier Lin.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Basic facts of Airy function

In this section, we review some basic properties of the Airy function. As a notational convention, we say \(f(x) \sim g(x)\) as \(x \rightarrow a\) (where a can be \(\pm \infty \)) if \(\lim _{x \rightarrow a} \frac{f(x)}{g(x)} = 1\).

Lemma 5.4

We have the following asymptotics for Airy function

$$\begin{aligned} Ai (x) \sim {\left\{ \begin{array}{ll} \frac{e^{-\frac{2}{3} x^{\frac{3}{2}}}}{2 \sqrt{\pi } x^{\frac{1}{4}}} &{} x \rightarrow +\infty ,\\ \frac{1}{\sqrt{\pi } |x|^{\frac{1}{4}}}\cos \Big (\frac{\pi }{4} - \frac{2 |x|^{\frac{3}{2}}}{3}\Big ) &{} x \rightarrow -\infty . \end{array}\right. } \quad Ai '(x) \sim {\left\{ \begin{array}{ll} -\frac{x^{\frac{1}{4}} e^{-\frac{2}{3} x^{\frac{3}{2}}}}{2 \sqrt{\pi }} &{} x \rightarrow +\infty ,\\ -\frac{|x|^{\frac{1}{4}}}{\sqrt{\pi } }\cos \Big (\frac{\pi }{4} + \frac{2 |x|^{\frac{3}{2}}}{3}\Big ) &{} x \rightarrow -\infty . \end{array}\right. } \end{aligned}$$

Proof

See Eq 10.4.59-10.4.62 of [3]. \(\square \)

Lemma 5.5

We have \(\int _{-\infty }^{\infty } Ai (x) dx = 1\) and \(\int _{-\infty }^0 Ai (x) dx = 1/3\).

Proof

See page 431 of [53]. \(\square \)

Lemma 5.6

There exists constant C such that

$$\begin{aligned}&\frac{1}{C (x+1)} e^{-\frac{4}{3} x^{\frac{3}{2}}}\le \int _0^{\infty } Ai (x+\lambda )^2 d\lambda \le \frac{C}{x+1} e^{-\frac{4}{3} x^{\frac{3}{2}}} \quad \, \forall \, x \ge 0 \\&\frac{1}{C} (\sqrt{|x|} + 1) \le \int _0^{\infty } Ai (x+\lambda )^2 d\lambda \le C (\sqrt{|x|} + 1) ,\qquad \forall \,x \le 0 \end{aligned}$$

Proof

This is Eq 2.8 and Eq 2.9 of [27]. \(\square \)

Appendix B. Estimate of the Pfaffian Kernel entries

In this section, we provide various bounds for the entries in the GOE Pfaffian kernel.

Lemma 5.7

There exists a constant \(C > 0\) such that

  1. (i)

    \(\frac{\exp (-\frac{2}{3} x^{\frac{3}{2}})}{C (1+x)^{\frac{1}{4}}} \le K_{12}(x,x) \le \frac{C \exp (-\frac{2}{3} x^{\frac{3}{2}})}{(1+x)^{\frac{1}{4}}}\qquad \forall \, x \ge 0,\)

  2. (ii)

    \(0 \le K_{12}(x, x) \le C\sqrt{1-x} \quad \forall \,\ x \le 0.\)

Proof

We first prove (i). By setting \(x = y\) in (2.2), we get

$$\begin{aligned} K_{12} (x, x) = \int _0^{\infty } \text {Ai}(x+\lambda )^2 d\lambda + \frac{1}{2} \text {Ai}(x) \int _{-\infty }^x \text {Ai}(\lambda ) d\lambda . \end{aligned}$$
(B.1)

For the second term in the above display, by Lemmas 5.4 and 5.5, we have as \(x \rightarrow +\infty \)

$$\begin{aligned} \text {Ai}(x) \int _{-\infty }^{x} \text {Ai}(\lambda ) d\lambda \sim \frac{e^{-\frac{2}{3} x^{\frac{3}{2}}}}{2 \sqrt{\pi } x^{\frac{1}{4}}} \end{aligned}$$

Combining this with the first inequality of Lemma 5.6, which controls the first term on the right hand side, the upper bound in (i) naturally follows. To prove the lower bound of (i), due to the above displayed asymptotic and the non-negativity of \(\int _0^\infty \text {Ai}(x+\lambda )^2 d\lambda \), there exists constant M and C such that for \(x > M\),

$$\begin{aligned} K_{12}(x, x) \ge C^{-1} x^{-\frac{1}{4}}\exp \left( -\frac{2}{3} x^{\frac{3}{2}}\right) . \end{aligned}$$

To conclude the lower bound in (i), it suffices to show that the minimum of \(K_{12} (x, x)\) is positive over [0, M] (\(K_{12}(x, x)\) is continuous, so admits a minimum). Due to Eq. (B.1) and Lemma 5.5, we can rewrite \(K_{12}(x, x) = \int _{0}^\infty \text {Ai}(x+\lambda )^2 d\lambda + \frac{1}{3} \text {Ai}(x) + \frac{1}{2}\text {Ai} (x) \int _{0}^x \text {Ai} (\lambda ) d\lambda \). Since \(\text {Ai}(x)\) is positive for \(x \ge 0\), this implies \(K_{12}(x, x) > 0\) for all \(x > 0\), which completes the proof of the lower bound.

We move on proving (ii). The lower bound follows directly since \(K_{12} (x, x)\) is the first order correlation function of a Pfaffian point process, thus is negative. For the upper bound, by the asymptotic of \(\text {Ai}(x)\) at \(-\infty \), there exists constant C such that for all \(x \le 0\),

$$\begin{aligned} \bigg |\text {Ai}(x) \int _{-\infty }^{x} \text {Ai}(\lambda ) d\lambda \, \bigg | \le C (1+|x|)^{-\frac{1}{4}}. \end{aligned}$$

The result then follows from the second inequality of Lemma 5.6 and (B.1). \(\square \)

Recall that we defined \(F_{\alpha , \beta }(x) = C\big ( e^{-\alpha x^{\frac{3}{2}}} {\mathbf {1}}_{\{x \ge 0\}} + (1-x)^\beta {\mathbf {1}}_{\{x < 0\}}\big )\).

Lemma 5.8

There exists a constant C, such that for all \(x, y \in {\mathbb {R}}\), we have the following upper bounds for the Pfaffian kernel entries:

  1. (a)

    \(|K_{11}(x, y)| \le C \big (F_{\frac{2}{3}, \frac{5}{4}} (x) \wedge F_{\frac{2}{3}, \frac{3}{4}}(x) F_{\frac{2}{3}, \frac{3}{4}}(y)\big )\)

  2. (b)

    \(|K_{12}(x, y)| \le C \big (F_{\frac{2}{3}, \frac{3}{4}}(x) \wedge F_{0, \frac{3}{4}} (y)\big )\)

  3. (c)

    \(|K_{22} (x, y)| \le C F_{0, \frac{3}{4}} (x) \)

Proof

For (a), it suffices to show that \(|K_{11}(x, y)| \le C F_{\frac{2}{3}, \frac{5}{4}} (x)\) and \(|K_{11}(x, y)| \le CF_{\frac{2}{3}, \frac{3}{4}}(x) F_{\frac{2}{3}, \frac{3}{4}}(y)\). Recall the expression of \(K_{11}(x, y)\) from (2.1). Using integration by parts for the right hand side of (2.1), we get \(K_{11}(x, y) = \text {Ai}(x) \text {Ai}(y) - 2\int _0^{\infty } \text {Ai}(y + \lambda ) \text {Ai}'(x+\lambda ) d\lambda .\) This implies that \(|K_{11}(x, y)| \le |\text {Ai}(x) \text {Ai}(y)| + 2 \int _0^\infty |\text {Ai}(y + \lambda ) \text {Ai}'(x+ \lambda )| d\lambda \). Since \(|\text {Ai}(x)|\) is a bounded function, there exists constant C such that

$$\begin{aligned} |K_{11}(x, y)| \le C|\text {Ai}(x)| + C \int _0^{\infty } |\text {Ai}'(x+\lambda )| d\lambda = C + C \int _x^{\infty } |\text {Ai}'(\lambda )| d\lambda . \end{aligned}$$

To obtain the upper bound for \(|\text {Ai}(x)|\) and \(\int _x^{\infty } |\text {Ai}(\lambda )| d\lambda \), it suffices to look at their behavior as \(x \rightarrow \pm \infty \). The asymptotic \(\text {Ai}'(x)\) at \(\pm \infty \) is specified in Lemma 5.4. Therefore,

$$\begin{aligned} \int _x^\infty |\text {Ai}'(\lambda )| d\lambda \le C e^{-\frac{2}{3} x^{\frac{3}{2}}}, \text { if } x \ge 0; \qquad \int _x^\infty |\text {Ai}'(\lambda )| d\lambda \le C(1 - x)^{\frac{5}{4}} \text { if } x \le 0. \end{aligned}$$

This implies that \(|K_{11}(x, y)| \le C F_{\frac{2}{3}, \frac{5}{4}} (x)\). In addition, since

$$\begin{aligned} K_{11}(x, y) = \int _0^{\infty } \text {Ai}(x+\lambda ) \text {Ai}'(y+\lambda ) d\lambda - \int _0^{\infty } \text {Ai}'(x+\lambda ) \text {Ai}(y+\lambda ) d\lambda = A_1 - A_2 \end{aligned}$$

By Cauchy Schwartz inequality,

$$\begin{aligned} A_1^2 \le \int _0^{\infty } \text {Ai}(x + \lambda )^2 d\lambda \int _0^{\infty } \text {Ai}'(y + \lambda )^2 d\lambda = \int _x^{\infty } \text {Ai}(\lambda )^2 d\lambda \int _{y}^{\infty } \text {Ai}'(\lambda )^2 d\lambda . \end{aligned}$$

By Lemma 5.4, \(\text {Ai}(x)^2\) decays asymptotically as \(\exp (-\frac{4}{3} x^{\frac{3}{2}})\) as \(x \rightarrow +\infty \) and is asymptotically upper bounded by \(|x|^{-\frac{1}{2}}\) as \(x \rightarrow -\infty \). This implies that \(\int _x^{\infty } \text {Ai}(\lambda )^2 d\lambda \le C F_{\frac{4}{3}, \frac{1}{2}} (x)\). Similarly, \(\text {Ai}'(y)^2\) decays asymptotically as \(\exp (-\frac{4}{3} y^{\frac{3}{2}})\) and is asymptotically upper bounded by \(|y|^{\frac{1}{2}}\), we get \(\int _y^{\infty } \text {Ai}'(\lambda )^2 d\lambda \le C F_{\frac{4}{3}, \frac{3}{2}}(y)\). As a result,

$$\begin{aligned} |A_1|&\le \Big (\int _x^{\infty } \text {Ai}(\lambda )^2 d\lambda \Big )^{\frac{1}{2}} \Big (\int _y^{\infty } \text {Ai}'(\lambda )^2 d\lambda \Big )^{\frac{1}{2}} \le C F_{\frac{2}{3}, \frac{1}{4} }(x) F_{\frac{2}{3}, \frac{3}{4} }(y) \le C F_{\frac{2}{3}, \frac{3}{4} }(x) F_{\frac{2}{3}, \frac{3}{4} }(y). \end{aligned}$$

For the second inequality above, we use the property that \(\sqrt{F_{\alpha , \beta }} = F_{\alpha /2, \beta /2} \) and for the third inequality, \(F_{\alpha , \beta }(x)\) is increasing in \(\beta \). Interchanging the role of x and y, we also have \(|A_2| \le C F_{\frac{2}{3}, \frac{3}{4} }(x) F_{\frac{2}{3}, \frac{3}{4} }(y)\). Therefore, the same upper bound holds for \(|K_{11} (x, y)|\) and we conclude the proof of (a).

We move on showing (b). We will prove \(|K_{12}(x, y)| \le C F_{\frac{2}{3}, \frac{3}{4}}(x)\) and \(|K_{12}(x, y)| \le C F_{0, \frac{3}{4}} (y)\) respectively. Recall \(K_{12} (x, y)\) from (2.2). Note that both \(|\text {Ai}(y + \lambda )|\) and \(|\int _{-\infty }^y \text {Ai}(\lambda ) d\lambda |\) are bounded function of y (see Lemma 5.5), by using triangle inequality,

$$\begin{aligned} |K_{12} (x, y)|&\le \frac{1}{2} \int _0^{\infty } |\text {Ai}(x+\lambda ) \text {Ai} (y+\lambda )| d\lambda + \frac{1}{2} |\text {Ai}(x)| \\&\quad \cdot \Big |\int _{-\infty }^y \text {Ai}(\lambda ) d\lambda \Big | \le C \int _x^{\infty } |\text {Ai}(\lambda )| d\lambda + C |\text {Ai}(x)|. \end{aligned}$$

By the asymptotic of \(\text {Ai}(x)\) at \(\pm \infty \), (use the similar approach as in part (a)), we see that \(|K_{12} (x, y)| \le C F_{\frac{2}{3}, \frac{3}{4}} (x).\)

We proceed to obtain a different upper bound for \(K_{12}\). Referring to the right hand side of the first inequality in the above display and upper bounding \(|\text {Ai}(x +\lambda )|\) and \(|\frac{1}{2} \text {Ai}(x) \int _{-\infty }^y \text {Ai}(\lambda ) d\lambda |\) by a constant, we find that

$$\begin{aligned} |K_{12}(x, y)| \le C \int _0^{\infty } |\text {Ai}(y+\lambda )| d\lambda + C \le C F_{0, \frac{3}{4}}(y). \end{aligned}$$

This concludes our proof of (b).

Finally, let us demonstrate (c). Recall from (2.3) that

$$\begin{aligned} K_{22} (x, y)&= \frac{1}{4} \int _0^\infty \text {Ai}(x + \lambda ) \Big (\int _\lambda ^\infty \text {Ai}(y+\mu )d\mu \Big ) d\lambda \nonumber \\&\quad - \frac{1}{4} \int _0^{\infty } \text {Ai}(y+ \lambda ) \Big (\int _{\lambda }^{\infty } \text {Ai}(x+\mu ) d \mu \Big ) d\lambda \nonumber \\&\quad - \frac{1}{4} \int _0^\infty \text {Ai}(x+\lambda ) d\lambda + \frac{1}{4} \int _0^{\infty } \text {Ai}(y+\lambda ) d\lambda - \frac{\text {sgn}(x-y)}{4} \end{aligned}$$
(B.2)

and recall that \(\text {sgn}\) is the sign function. By Fubini’s theorem,

$$\begin{aligned} \int _0^\infty \text {Ai}(y+\lambda ) \Big (\int _{\lambda }^\infty \text {Ai}(x+\mu )d\mu \Big ) d\lambda&= \Big (\int _0^{\infty } \text {Ai}(x+\lambda ) d\lambda \Big ) \Big (\int _0^{\infty } \text {Ai}(y+\lambda ) d\lambda \Big ) \\&\quad - \int _0^\infty \text {Ai}(x + \lambda )\Big (\int _\lambda ^\infty \text {Ai}(y + \mu ) d\mu \Big ) d\lambda \end{aligned}$$

Replacing the term \(\int _{0}^\infty \text {Ai}(y + \lambda ) \big (\int _{\lambda }^{\infty } \text {Ai}(x+ \mu ) d\mu \big ) d\lambda \) in (B.2) with the right hand side in the above display,

$$\begin{aligned} K_{22} (x, y)&= \frac{1}{2} \int _0^\infty \text {Ai}(x + \lambda ) \Big (\int _{\lambda }^\infty \text {Ai}(y + \mu )d\mu \Big )d\lambda \\&\quad - \frac{1}{4} \Big (\int _0^{\infty } \text {Ai}(x+\lambda ) d\lambda \Big ) \Big (\int _0^{\infty } \text {Ai}(y+\lambda ) d\lambda \Big )\\&\quad -\frac{1}{4} \int _0^{\infty } \text {Ai}(x+\lambda ) d\lambda + \frac{1}{4} \int _0^\infty \text {Ai}(y + \lambda ) d\lambda - \frac{\text {sgn}(x-y)}{4}. \end{aligned}$$

We know that \(\big |\int _0^{\infty } \text {Ai}(x+\lambda ) d\lambda \big |, \big |\int _0^{\infty } \text {Ai}(y+\lambda ) d\lambda \big |\) can upper bounded by a constant. Applying triangle inequality to the above display,

$$\begin{aligned} |K_{22} (x, y)| \le C \int _0^{\infty } |\text {Ai}(x + \lambda )| d\lambda + C. \end{aligned}$$

Using the asymptotic of \(\text {Ai}(x)\) at \(\pm \infty \) in Lemma 5.4, we find that \(|K_{22}(x, y) | \le C F_{0, \frac{3}{4}} (x)\), thus conclude (c). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y. Lyapunov Exponents of the Half-Line SHE. J Stat Phys 183, 37 (2021). https://doi.org/10.1007/s10955-021-02772-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02772-8

Keywords

Navigation