Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Activity Induced Nematic Order in Isotropic Liquid Crystals

  • 24 Accesses

Abstract

We use linear stability analysis to show that an isotropic phase of elongated particles with dipolar flow fields can develop nematic order as a result of their activity. We argue that ordering is favoured if the particles are flow-aligning and is strongest if the wavevector of the order perturbation is neither parallel nor perpendicular to the nematic director. Numerical solutions of the hydrodynamic equations of motion of an active nematic confirm the results. The instability is contrasted to the well-known hydrodynamic instability of an ordered active nematic.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Sanchez, T., Chen, D.T., DeCamp, S.J., Heymann, M., Dogic, Z.: Spontaneous motion in hierarchically assembled active matter. Nature 491(7424), 431 (2012)

  2. 2.

    Hardoüin, J., Hughes, R., Doostmohammadi, A., Laurent, J., Lopez-Leon, T., Yeomans, J.M., Ignés-Mullol, J., Sagués, F.: Reconfigurable flows and defect landscape of confined active nematics. Commun. Phys. 2(1), 1–9 (2019)

  3. 3.

    Weirich, K.L., Dasbiswas, K., Witten, T.A., Vaikuntanathan, S., Gardel, M.L.: Self-organizing motors divide active liquid droplets. Proc. Natl. Acad. Sci. USA 116(23), 11125 (2019)

  4. 4.

    Duclos, G., Blanch-Mercader, C., Yashunsky, V., Salbreux, G., Joanny, J.F., Prost, J., Silberzan, P.: Spontaneous shear flow in confined cellular nematics. Nat. Phys. 14(7), 728 (2018)

  5. 5.

    Saw, T.B., Doostmohammadi, A., Nier, V., Kocgozlu, L., Thampi, S., Toyama, Y., Marcq, P., Lim, C.T., Yeomans, J.M., Ladoux, B.: Topological defects in epithelia govern cell death and extrusion. Nature 544(7649), 212 (2017)

  6. 6.

    Di Leonardo, R., Angelani, L., Dell’Arciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M., Mecarini, F., De Angelis, F., Di Fabrizio, E.: Bacterial ratchet motors. Proc. Natl. Acad. Sci. USA 107(21), 9541 (2010)

  7. 7.

    Ramaswamy, S.: The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1(1), 323 (2010)

  8. 8.

    Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, C., Volpe, G., Volpe, G.: Active particles in complex and crowded environments. Rev. Mod. Phys. 88(4), 045006 (2016)

  9. 9.

    Illien, P., Golestanian, R., Sen, A.: ‘Fuelled’motion: phoretic motility and collective behaviour of active colloids. Chem. Soc. Rev. 46(18), 5508 (2017)

  10. 10.

    Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M., Simha, R.A.: Hydrodynamics of soft active matter. Rev. Mod. Phys. 85(3), 1143 (2013)

  11. 11.

    Koch, D.L., Subramanian, G.: Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43, 637 (2011)

  12. 12.

    Thampi, S.P., Golestanian, R., Yeomans, J.M.: Vorticity, defects and correlations in active turbulence. Phil. Trans. R. Soc. A 372(2029), 20130366 (2014)

  13. 13.

    Giomi, L., Bowick, M.J., Ma, X., Marchetti, M.C.: Defect annihilation and proliferation in active nematics. Phys. Rev. Lett. 110(22), 228101 (2013)

  14. 14.

    Tjhung, E., Marenduzzo, D., Cates, M.E.: Spontaneous symmetry breaking in active droplets provides a generic route to motility. Proc. Natl. Acad. Sci. USA 109(31), 12381 (2012)

  15. 15.

    Shendruk, T.N., Doostmohammadi, A., Thijssen, K., Yeomans, J.M.: Dancing disclinations in confined active nematics. Soft Matter 13(21), 3853 (2017)

  16. 16.

    Wu, K.T., Hishamunda, J.B., Chen, D.T., DeCamp, S.J., Chang, Y.W., Fernández-Nieves, A., Fraden, S., Dogic, Z.: Transition from turbulent to coherent flows in confined three-dimensional active fluids. Science 355(6331), eaal1979 (2017)

  17. 17.

    Keber, F.C., Loiseau, E., Sanchez, T., DeCamp, S.J., Giomi, L., Bowick, M.J., Marchetti, M.C., Dogic, Z., Bausch, A.R.: Topology and dynamics of active nematic vesicles. Science 345(6201), 1135 (2014)

  18. 18.

    Metselaar, L., Yeomans, J.M., Doostmohammadi, A.: Topology and morphology of self-deforming active shells. Phys. Rev. Lett. 123, 208001 (2019)

  19. 19.

    Kawaguchi, K., Kageyama, R., Sano, M.: Topological defects control collective dynamics in neural progenitor cell cultures. Nature 545, 327 (2017)

  20. 20.

    Volfson, D., Cookson, S., Hasty, J., Tsimring, L.S.: Biomechanical ordering of dense cell populations. Proc. Natl. Acad. Sci. USA 105, 15346 (2008)

  21. 21.

    Nishiguchi, D., Nagai, K.H., Chaté, H., Sano, M.: Long-range nematic order and anomalous fluctuations in suspensions of swimming filamentous bacteria. Phys. Rev. E 95(2), 020601 (2017)

  22. 22.

    Mueller, R., Yeomans, J.M., Doostmohammadi, A.: Emergence of active nematic behavior in monolayers of isotropic cells. Phys. Rev. Lett. 122(4), 048004 (2019)

  23. 23.

    Simha, R.A., Ramaswamy, S.: Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89(5), 058101 (2002)

  24. 24.

    Voituriez, R., Joanny, J.F., Prost, J.: Spontaneous flow transition in active polar gels. Europhys. Lett. 70(3), 404 (2005)

  25. 25.

    Xi, W., Saw, T.B., Delacour, D., Lim, C.T., Ladoux, B.: Material approaches to active tissue mechanics. Nat. Rev. Mater. 4(1), 23 (2019)

  26. 26.

    Elgeti, J., Winkler, R.G., Gompper, G.: Physics of microswimmers-single particle motion and collective behavior: a review. Rep. Prog. Phys. 78(5), 056601 (2015)

  27. 27.

    Thampi, S.P., Doostmohammadi, A., Golestanian, R., Yeomans, J.M.: Intrinsic free energy in active nematics. Europhys. Lett. 112(2), 28004 (2015)

  28. 28.

    de Gennes, P., Prost, J.: The Physics of Liquid Crystals. International series of monographs on physics. Clarendon Press, Oxford (1993)

  29. 29.

    Beris, A., Edwards, B.: Thermodynamics of Flowing Systems: with Internal Microstructure. Oxford Engineering Science Series. Oxford University Press, Oxford (1994)

  30. 30.

    Chaikin, P., Lubensky, T.: Principles of Condensed Matter Physics. Cambridge University Press, Cambridge (2000)

  31. 31.

    Tóth, G., Denniston, C., Yeomans, J.M.: Hydrodynamics of topological defects in nematic liquid crystals. Phys. Rev. Lett. 88(10), 105504 (2002)

  32. 32.

    Edwards, S., Yeomans, J.: Spontaneous flow states in active nematics: a unified picture. Europhys. Lett. 85(1), 18008 (2009)

  33. 33.

    Giomi, L.: Geometry and topology of turbulence in active nematics. Phys. Rev. X 5, 031003 (2015)

  34. 34.

    Guillamat, P., Ignés-Mullol, J., Sagués, F.: Taming active turbulence with patterned soft interfaces. Nat. Commun. 8(1), 564 (2017)

  35. 35.

    Martínez-Prat, B., Ignés-Mullol, J., Casademunt, J., Sagués, F.: Selection mechanism at the onset of active turbulence. Nat. Phys. 15(4), 362 (2019)

  36. 36.

    Olmsted, P.D., Goldbart, P.M.: Isotropic-nematic transition in shear flow: state selection, coexistence, phase transitions, and critical behavior. Phys. Rev. A 46(8), 4966 (1992)

  37. 37.

    Lauga, E., Powers, T.R.: The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72(9), 096601 (2009)

  38. 38.

    Saintillan, D.: Rheology of active fluids. Annu. Rev. Fluid Mech. 50, 563 (2018)

  39. 39.

    Schiesser, W.: The Numerical Method of Lines: Integration of Partial Differential Equations. Elsevier Science, Amsterdam (2012)

  40. 40.

    Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.: The Lattice Boltzmann Method: Principles and Practice. Graduate Texts in Physics. Springer, New York (2016)

  41. 41.

    Subramanian, G., Koch, D.L.: Critical bacterial concentration for the onset of collective swimming. J. Fluid Mech. 632, 359 (2009)

  42. 42.

    Saintillan, D., Shelley, M.J.: Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations. Phys. Rev. Lett. 100(17), 178103 (2008)

  43. 43.

    Saintillan, D., Shelley, M.J.: Instabilities, pattern formation, and mixing in active suspensions. Phys. Fluids 20(12), 123304 (2008)

Download references

Acknowledgements

We acknowledge Santhan Chandragiri for helpful discussions. A.D was supported by the Novo Nordisk Foundation (Grant agreement No. NNF18SA0035142)

Author information

Correspondence to Sumesh P. Thampi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Ivan Corwin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santhosh, S., Nejad, M.R., Doostmohammadi, A. et al. Activity Induced Nematic Order in Isotropic Liquid Crystals. J Stat Phys (2020). https://doi.org/10.1007/s10955-020-02497-0

Download citation

Keywords

  • Active nematics
  • Hydrodynamic instability
  • Liquid crystals