We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Towards a Mathematical Model of the Brain

  • 35 Accesses


This article presents an idealized mathematical model of the cerebral cortex, focusing on the dynamical interaction of neurons. The author proposes a network architecture more consistent with neuroanatomy than in previous studies, borrows ideas from nonequilibrium statistical mechanics and calls attention to the fact that the brain is a large and complex dynamical system. The ideas proposed are illustrated with a realistic model of the visual cortex.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Baddeley, R., Abbott, L.F., Booth, M.C.A., Sengpiel, F., Freeman, T., Wakeman, E.A., Rolls, E.T.: Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc. R Soc. Lond. B 264, 1775–1783 (1997)

  2. 2.

    Beaulieu, C., Kisvarday, Z., Somogyi, P., Cynader, M., Cowey, A.: Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cereb. Cortex 2, 295–309 (1992)

  3. 3.

    Binzegger, T., Douglas, R., Martin, K.: Topology and dynamics of the canonical circuit of cat V1. Neural Netw. 22, 1071–78 (2009)

  4. 4.

    Börgers, C., Kopell, N.: Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput. 15(3), 509–538 (2003)

  5. 5.

    Bressloff, P.: Waves in Neural Media: From single neurons to neural fields. Lecture Notes in Math. Modeling in the Life Sciences, Springer (2014)

  6. 6.

    Brunel, N., Hakim, V.: Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11(7), 1621–1671 (1999)

  7. 7.

    Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 3, 183–208 (2000)

  8. 8.

    Brunel, N., Wang, X.J.: What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J. Neurophysiol. 90(1), 415–430 (2003)

  9. 9.

    Buice, M.A., Cowan, J.: Statistical mechanics of the neocortex. Prog. Biophys. Mol. Biol. 99(2–3), 53–86 (2009)

  10. 10.

    Burns, S.P., Xing, D., Shapley, R.M.: Gamma-band activity in the local field potential of V1 cortex: a “clock or filtered noise? J. Neurosci. 31, 9658–64 (2011)

  11. 11.

    Cai, D., Tao, L., Rangan, A.V., McLaughlin, D.W., et al.: Kinetic theory for neuronal network dynamics. Commun. Math. Sci. 4(1), 97–127 (2006)

  12. 12.

    Cardin, J.A.: Snapshots of the brain in action: local circuit operations through the lens of oscillations. J. Neurosci. 36, 10496–10504 (2006)

  13. 13.

    Chariker, L., Young, L.-S.: Emergent spike patterns in neuronal populations. J. Comput. Neurosci. 38(1), 203–220 (2015)

  14. 14.

    Chariker, L., Shapley, R., Young, L.-S.: Orientation selectivity from very sparse LGN inputs in a comprehensive model of macaque V1 cortex. J. Neurosci. 36, 12368–12384 (2016)

  15. 15.

    Chariker, L., Shapley, R., Young, L.-S.: Rhythm and synchrony in a cortical network model. J. Neurosci. 38(40), 8621–8634 (2018)

  16. 16.

    Chariker, L., Shapley, R., Young, L.-S.: Contrast response in a comprehensive network model of V1. Under Review

  17. 17.

    De Groot, S., Mazur, P.: Nonequilibrium Thermodynamics. North Holland, Amsterdam (1962)

  18. 18.

    Eckmann, J.P., Young, L.-S.: Nonequilibrium energy profiles for a class of 1D models. Commun. Math. Phys. 262(1), 237–267 (2006)

  19. 19.

    Gerstein, G.L., Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4, 41 (1964)

  20. 20.

    Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86, 1698–1702 (1989)

  21. 21.

    Heeger, D.: Theory of cortical function. Proc. Natl. Acad. Sci. USA 114, 1773–1782 (2018)

  22. 22.

    Henrie, J.A., Shapley, R.: Lfp power spectra in v1 cortex: the graded effect of stimulus contrast. J. Neurophysiol. 94(1), 479–490 (2005)

  23. 23.

    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–44 (1952)

  24. 24.

    Holmgren, C., Harkany, T., Svennenfors, B., Zilberter, Y.: Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. 551, 139–53 (2003)

  25. 25.

    Hubel, D., Wiesel, T.: Receptive fields, binocular interaction and functional architecture in the cats visual cortex. J. Physiol. 160, 106–154 (1962)

  26. 26.

    Joglekar, M., Mejias, J., Yang, G.R., Wang, X.-J.: Inter-areal balanced amplification enhances signal propagation in a large-scale circuit model of the primate cortex. Neuron 98(1), 222–234.e8 (2018)

  27. 27.

    Koch, C.: Biophysics of Computation. Oxford Univ Press, Oxford (1999)

  28. 28.

    Li, Y., Chariker, L., Young, L.-S.: How well do reduced models capture the dynamics in models of interacting neurons? J. Math. Biol. 78, 83 (2018). https://doi.org/10.1007/s00285-018-1268-0

  29. 29.

    McLaughlin, D., Shapley, R., Shelley, M., Wielaard, D.J.: A Neuronal Network Model of sharpening and dynamics of orientation tuning in an input layer of macaque primary visual cortex. Proc. Natl. Acad. Sci. USA 97, 8087–8092 (2000)

  30. 30.

    Ostojic, S.: Interspike interval distributions of spiking neurons driven by fluctuating inputs. J. Neurophysiol. 106, 361–373 (2011)

  31. 31.

    Oswald, A.M., Reyes, A.: Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex. J. Neurophysiol. 99, 2998–3008 (2008)

  32. 32.

    Rangan, A.V., Young, L.-S.: Emergent dynamics in a model of visual cortex. J. Comput. Neurosci. 35, 155–167 (2013)

  33. 33.

    Rangan, A.V., Young, L.-S.: Dynamics of spiking neurons: between homogeneity and synchrony. J. Comput. Neurosci. 34(3), 433–460 (2013)

  34. 34.

    Tso, D.Y., Frostig, R.D., Lieke, E.E., Grinvald, A.: Functional organization of primate visual cortex revealed by high resolution optimal imaging. Science 249(4967), 417–420 (1990)

  35. 35.

    Ungerleider, L.G., Desimone, R.: Cortical connections of visual area MT in the macaque. J. Comput. Neurol. 248(2), 190–222 (1986)

  36. 36.

    Ungerleider, L.G., Galkin, T.W., Desimone, R., Gattass, R.: Cortical connections of area V4 in the macaque. Cereb. Cortex 3, 477–99 (2008)

  37. 37.

    van Vreeswijk, C., Sompolinsky, H.: Chaotic balanced state in a model of cortical circuits. Neural Comput. 10(6), 1321–1371 (1998)

  38. 38.

    Wilson, H., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972)

Download references

Author information

Correspondence to Lai-Sang Young.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is partially supported by NSF Grants 1734854 and 1901009.

Communicated by Ivan Corwin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Young, L. Towards a Mathematical Model of the Brain. J Stat Phys (2020). https://doi.org/10.1007/s10955-019-02483-1

Download citation


  • Cortical dynamics
  • Neuronal interaction
  • Nonequilibrium steady states
  • Visual cortex