Bibliometric Analysis of Rumor Propagation Research Through Web of Science from 1989 to 2019

  • Zhiying WangEmail author
  • Hongli Zhao
  • Huifang Nie


With the development of various social networking platforms, the spread of rumors has become more and more rapidly and has received more and more attention from scholars for the hazards it may cause. However, the existing studies rarely review the research status and explore the research trends in the field of rumor propagation from a systematic perspective, which provides motivation for us to carry out this work. Therefore, we use CiteSpace software to perform the bibliometric analysis of 970 articles about rumor propagation in the core collection database of Web of Science from 1989 to 2019. First, we examine the time and spatial distribution to describe the time trends of articles and the contribution of countries to the field of rumor propagation. Second, we analyze the authors and co-cited authors to show the collaboration between authors, the most productive and influential authors. Then, we perform the source journals and co-cited journals analysis to demonstrate the most important journals. Further, we analyze the keywords co-occurrence to explore the evolution of hot topics over time. Finally, we conduct the document co-citation analysis to identify the intellectual bases and emerging trends. This article can be served as a review of rumor propagation research to help researchers carry out in-depth research in the future.


Rumor propagation Bibliometrics CiteSpace Research status Research trends 



This work was jointly supported by the National Natural Science Foundation of China (Project No. 71704001), the Natural Science Foundation of Anhui Province (Project No. 1808085QG224), the Humanities and Social Science Key Project of Anhui Provincial Education Department (Project No. SK2019A0075), and the Planning Funds of Philosophy and Social Science of Anhui Province (Project Nos. AHSKY2018D13 and AHSKQ2016D19). The authors sincerely appreciate the editor and anonymous referees for their pertinent comments and enlightening suggestions.


  1. 1.
    Ding, Z.G., Dong, Y.C., Kou, G., Palomares, I., Yu, S.: Consensus formation in opinion dynamics with online and offline interactions at complex networks. Int. J. Mod. Phys. C 29(7), 1850046 (2018)CrossRefADSGoogle Scholar
  2. 2.
    Wang, B.R., Zhuang, J.: Rumor response, debunking response, and decision makings of misinformed Twitter users during disasters. Nat. Hazards 93(3), 1145–1162 (2018)CrossRefGoogle Scholar
  3. 3.
    Knapp, R.H.: A psychology of rumor. Public Opin. Q. 8(1), 22–37 (1944)CrossRefGoogle Scholar
  4. 4.
    Zhao, L.J., Cui, H.X., Qiu, X.Y., Wang, X.L., Wang, J.J.: SIR rumor spreading model in the new media age. Physica A 392(4), 995–1003 (2013)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Qiu, X.Y., Zhao, L.J., Wang, J.J., Wang, X.L., Wang, Q.: Effects of time-dependent diffusion behaviors on the rumor spreading in social networks. Phys. Lett. A 380(24), 2054–2063 (2016)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Allport, G.W., Postman, L.: An analysis of rumor. Public Opin. Q. 10(4), 501–517 (1946)CrossRefGoogle Scholar
  7. 7.
    Prasad, J.: A comparative study of rumors and reports in earthquakes. Brit. J. Psychol. 41, 129–144 (1950)Google Scholar
  8. 8.
    Prasad, J.: The psychology of rumor: a study relating to the great Indian earthquake of 1934. Br. J. Math. Stat. Psychol. 26(1), 1–15 (1935)Google Scholar
  9. 9.
    Daley, D.J., Kendall, D.G.: Stochastic rumors. IMA J. Appl. Math. 1(1), 42–55 (1965)CrossRefGoogle Scholar
  10. 10.
    Maki, D.P., Thompson, M.: Mathematical Models and Applications: With Emphasis on the Social, Life, and Management Sciences. Prentice-Hall, Englewood Cliffs (1973)Google Scholar
  11. 11.
    Yao, H.X., Gao, X.Y.: SE2IR invest market rumor spreading model considering hesitating mechanism. J. Syst. Sci. Inf. 7(1), 54–69 (2018)Google Scholar
  12. 12.
    Liu, W.P., Wu, X., Yang, W., Zhu, X.F., Zhong, S.M.: Modeling cyber rumor spreading over mobile social networks: a compartment approach. Appl. Math. Comput. 343, 214–229 (2019)Google Scholar
  13. 13.
    Zanette, D.H.: Critical behavior of propagation on small-world networks. Phys. Rev. E 64(5), 050901 (2001)CrossRefADSGoogle Scholar
  14. 14.
    Zanette, D.H.: Dynamics of rumor propagation on small-world networks. Phys. Rev. E 65(4), 041908 (2002)CrossRefADSGoogle Scholar
  15. 15.
    Agliari, E., Pachon, A., Rodriguez, P.M., Tavani, F.: Phase transition for the Maki-Thompson rumor model on a small-world network. J. Stat. Phys. 169(4), 846–875 (2017)CrossRefADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    Nekovee, M., Moreno, Y., Bianconi, G., Marsili, M.: Theory of rumor spreading in complex social networks. Physica A 374(1), 457–470 (2007)CrossRefADSGoogle Scholar
  17. 17.
    Zhu, H., Ma, J.: Analysis of SHIR rumor propagation in random heterogeneous networks with dynamic friendships. Physica A 513, 257–271 (2019)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Chen, T., Wu, L., Li, X., Zhang, J., Yin, H.Z., Wang, Y.: Call attention to rumors: deep attention based recurrent neural networks for early rumor detection. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Melbourne, Australia, pp. 40–52 (2018)Google Scholar
  19. 19.
    Dong, S., Huang, Y.C.: A class of rumor spreading models with population dynamics. Commun. Theor. Phys. 70(6), 795–802 (2018)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Dong, S., Deng, Y.B., Huang, Y.C.: SEIR model of rumor spreading in online social network with varying total population size. Commun. Theor. Phys. 68(4), 545–552 (2017)CrossRefADSGoogle Scholar
  21. 21.
    Huo, L.A., Ding, F., Cheng, Y.: Dynamic analysis of a SIbInIu, rumor spreading model in complex social network. Physica A 523, 924–932 (2019)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Ma, J., Gao, W., Wei, Z.Y., Lu, Y.M., Wong, K.F.: Detect rumors using time series of social context information on microblogging websites. In: Proceedings of the twenty-fourth ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, pp. 1751–1754 (2015)Google Scholar
  23. 23.
    Liu, X.M., Nourbakhsh, A., Li, Q. Z., Fang, R., Shah, S.: Real-time rumor debunking on twitter. In: Proceedings of the twenty-fourth ACM International on Conference on Information and Knowledge Management, New York, US, pp. 1867–1870 (2015)Google Scholar
  24. 24.
    Liang, T.P., Liu, Y.H.: Research landscape of business intelligence and big data analytics: a bibliometric study. Expert Syst. Appl. 111, 2–10 (2018)CrossRefGoogle Scholar
  25. 25.
    Hou, J.H., Yang, X.C., Chen, C.M.: Emerging trends and new developments in information science: a document co-citation analysis (2009–2016). Scientometrics 115(2), 869–892 (2018)CrossRefGoogle Scholar
  26. 26.
    Chen, C.M.: CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 57(3), 359–377 (2006)CrossRefGoogle Scholar
  27. 27.
    Liu, Y.L., Sun, T.T., Yang, L.: Evaluating the performance and intellectual structure of construction and demolition waste research during 2000–2016. Environ. Sci. Pollut. Res. 24(23), 19259–19266 (2017)CrossRefGoogle Scholar
  28. 28.
    Liu, Z.G., Yin, Y.M., Liu, W.D., Dunford, M.: Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis. Scientometrics 103(1), 135–158 (2015)CrossRefGoogle Scholar
  29. 29.
    Chen, C.M., Hu, Z.G., Liu, S.B., Tseng, H.: Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin. Boil. Th. 12(5), 593–608 (2012)CrossRefGoogle Scholar
  30. 30.
    Tian, M., Li, J.: Knowledge mapping of protective clothing research: a bibliometric analysis based on visualization methodology. Text. Res. J. 89(16), 3203–3220 (2018)CrossRefGoogle Scholar
  31. 31.
    Xie, P.: Study of international anticancer research trends via co-word and document co-citation visualization analysis. Scientometrics 105(1), 611–622 (2015)CrossRefGoogle Scholar
  32. 32.
    Song, J.B., Zhang, H.L., Dong, W.L.: A review of emerging trends in global PPP research: analysis and visualization. Scientometrics 107(3), 1111–1147 (2016)CrossRefGoogle Scholar
  33. 33.
    Chen, C.M., Ibekwe-SanJuan, F., Hou, J.H.: The structure and dynamics of co-citation clusters: a multiple-perspective co-citation analysis. J. Am. Soc. Inf. Sci. Technol. 61(7), 1386–1409 (2010)CrossRefGoogle Scholar
  34. 34.
    Cui, Y., Mou, J., Liu, Y.P.: Knowledge mapping of social commerce research: a visual analysis using CiteSpace. Electron. Commer. Res. 18(4), 837–868 (2018)CrossRefGoogle Scholar
  35. 35.
    Moreno, Y., Nekovee, M., Pacheco, A.F.: Dynamics of rumor spreading in complex networks. Phys. Rev. E 69(6), 066130 (2004)CrossRefADSGoogle Scholar
  36. 36.
    Liu, H., Liu, Y., Wang, Y.L., Pan, C.C.: Hot topics and emerging trends in tourism forecasting research: a scientometric review. Tour. Econ. 25(3), 448–468 (2019)CrossRefGoogle Scholar
  37. 37.
    Wang, J.J., Zhao, X., Guo, X.X., Li, B.L.: Analyzing the research subjects and hot topics of power system reliability through the Web of Science from 1991 to 2015. Renew. Sust. Energ. Rev. 82, 700–713 (2018)CrossRefGoogle Scholar
  38. 38.
    Li, D.D., Ma, J.: How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks? Physica A 469, 284–292 (2017)CrossRefADSMathSciNetzbMATHGoogle Scholar
  39. 39.
    Liu, Q.M., Li, T., Sun, M.C.: The analysis of an SEIR rumor propagation model on heterogeneous network. Physica A 469, 372–380 (2017)CrossRefADSMathSciNetzbMATHGoogle Scholar
  40. 40.
    Liu, Y., Diao, S.M., Zhu, Y.X., Liu, Q.: SHIR competitive information diffusion model for online social media. Physica A 461, 543–553 (2016)CrossRefADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefADSzbMATHGoogle Scholar
  42. 42.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)CrossRefADSMathSciNetzbMATHGoogle Scholar
  43. 43.
    Vazquez, A.: Spreading dynamics on small-world networks with connectivity fluctuations and correlations. Phys. Rev. E 74(5), 056101 (2006)CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Milgram, S.: The small world problem. Psychol. Today 2(1), 60–67 (1967)Google Scholar
  45. 45.
    Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of separation. In: Proceedings of the fourth Annual ACM Web Science Conference, Evanston, Illinois, pp. 33–42 (2012)Google Scholar
  46. 46.
    Al-Garadi, M.A., Varathan, K.D., Ravana, S.D.: Identification of influential spreaders in online social networks using interaction weighted k-core decomposition method. Physica A 468, 278–288 (2017)CrossRefADSGoogle Scholar
  47. 47.
    Gu, J., Li, W., Cai, X.: The effect of the forget-remember mechanism on spreading. Eur. Phys. J. B 62(2), 247–255 (2008)CrossRefADSGoogle Scholar
  48. 48.
    Li, W., Gu, J., Cai, X.: Message spreading and forget-remember mechanism on a scale-free network. Chin. Phys. Lett. 25(6), 2303–2306 (2008)CrossRefADSGoogle Scholar
  49. 49.
    Pezzo, M.V., Beckstead, J.W.: A multilevel analysis of rumor transmission: effects of anxiety and belief in two field experiments. Basic Appl. Soc. Psych. 28(1), 91–100 (2006)CrossRefGoogle Scholar
  50. 50.
    Afassinou, K.: Analysis of the impact of education rate on the rumor spreading mechanism. Physica A 414, 43–52 (2014)CrossRefADSMathSciNetzbMATHGoogle Scholar
  51. 51.
    Jiang, Y.F., Hou, L.Y., Shi, T.M., Gui, Q.C.: A review of urban planning research for climate change. Sustainability 9(12), 2224 (2017)CrossRefGoogle Scholar
  52. 52.
    Yang, L., He, L.Y., Ma, Y.F., Wu, L., Zhang, Z.L.: A visualized investigation on the intellectual structure and evolution of waste printed circuit board research during 2000–2016. Environ. Sci. Pollut. Res. 26(11), 11336–11341 (2019)CrossRefGoogle Scholar
  53. 53.
    Chen, C.M., Dubin, R., Kim, M.C.: Emerging trends and new developments in regenerative medicine: a scientometric update (2000–2014). Expert Opin. Biol. Ther. 14(9), 1295–1317 (2014)CrossRefGoogle Scholar
  54. 54.
    Xia, L.L., Jiang, G.P., Song, B., Song, Y.R.: Rumor spreading model considering hesitating mechanism in complex social networks. Physica A 437, 295–303 (2015)CrossRefADSMathSciNetzbMATHGoogle Scholar
  55. 55.
    Qazvinian, V., Rosengren, E., Radev, D.R., Mei, Q.: Rumor has it: Identifying misinformation in microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, pp. 1589–1599 (2011)Google Scholar
  56. 56.
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925–979 (2015)CrossRefADSMathSciNetGoogle Scholar
  57. 57.
    Oh, O., Agrawal, M., Rao, H.R.: Community intelligence and social media services: a rumor theoretic analysis of tweets during social crises. Mis Q. 37(2), 407–426 (2013)CrossRefGoogle Scholar
  58. 58.
    Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524, 65–68 (2015)CrossRefADSGoogle Scholar
  59. 59.
    Yang, F., Liu, Y., Yu, X.H., Yang, M.: Automatic detection of rumor on Sina Weibo. In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, Beijing, China, Article No. 13 (2012)Google Scholar
  60. 60.
    Kwon, S., Cha, M., Jung, K., Chen, W., Wang, Y.J.: Prominent features of rumor propagation in online social media. In: 2013 IEEE thirteenth International Conference on Data Mining, Dallas, US, pp. 1103–1108 (2013)Google Scholar
  61. 61.
    Pei, S., Muchnik, L., Andrade Jr., J.S., Zheng, Z.M., Makse, H.A.: Searching for superspreaders of information in real-world social media. Sci. Rep. 4, 5547 (2014)CrossRefADSGoogle Scholar
  62. 62.
    Zhao, Z., Resnick, P., Mei, Q.: Enquiring minds: early detection of rumors in social media from enquiry posts. In: Proceedings of the twenty-fourth International Conference on World Wide Web, Florence, Italy, pp. 1395–1405 (2015)Google Scholar
  63. 63.
    Zhao, L.J., Wang, J.J., Chen, Y.C., Wang, Q., Cheng, J.J., Cui, H.X.: SIHR rumor spreading model in social networks. Physica A 391(7), 2444–2453 (2012)CrossRefADSGoogle Scholar
  64. 64.
    Zhang, N., Huang, H., Su, B.N., Zhao, J.L., Zhang, B.: Dynamic 8-state ICSAR rumor propagation model considering official rumor refutation. Physica A 415, 333–346 (2014)CrossRefADSMathSciNetzbMATHGoogle Scholar
  65. 65.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the nineteenth International Conference on World Wide Web, North Carolina, US, pp. 591–600 (2010)Google Scholar
  66. 66.
    Zhao, L.J., Wang, Q., Cheng, J.J., Chen, Y.C., Wang, J.J., Huang, W.: Rumor spreading model with consideration of forgetting mechanism: a case of online blogging LiveJournal. Physica A 390(13), 2619–2625 (2011)CrossRefADSGoogle Scholar
  67. 67.
    Zhao, L.J., Qiu, X.Y., Wang, X.L., Wang, J.J.: Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks. Physica A 392(4), 987–994 (2013)CrossRefADSMathSciNetGoogle Scholar
  68. 68.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009)CrossRefADSGoogle Scholar
  69. 69.
    Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)CrossRefGoogle Scholar
  70. 70.
    Chen, D.B., Lü, L.Y., Shang, M.S., Zhang, Y.C., Zhou, T.: Identifying influential nodes in complex networks. Physica A 391(4), 1777–1787 (2012)CrossRefADSGoogle Scholar
  71. 71.
    Tang, L.Y., Ni, Z.W., Li, J.M.: Identifying influential users in network public opinion of crowd unfollow on twitter. J. Inf. Comput. Sci. 12(17), 6629–6642 (2015)CrossRefGoogle Scholar
  72. 72.
    Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading. In: Proceedings of the nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, California, US, pp. 773–781 (2008)Google Scholar
  73. 73.
    Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic time. In: Proceedings of the forty-third Annual ACM Symposium on Theory of Computing, California, US, pp. 21–30 (2011)Google Scholar
  74. 74.
    Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in social networks. In: Proceedings of the twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, Kyoto, Japan, pp. 1642–1660 (2012)Google Scholar
  75. 75.
    Shah, D., Zaman, T.: Rumors in a network: who’s the culprit? IEEE Trans. Inf. Theory 57(8), 5163–5181 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  76. 76.
    Luo, W.Q., Tay, W.P., Leng, M.: Identifying infection sources and regions in large networks. IEEE Trans. Signal Process. 61(11), 2850–2865 (2013)CrossRefADSMathSciNetzbMATHGoogle Scholar
  77. 77.
    Pinto, P.C., Thiran, P., Vetterli, M.: Locating the source of diffusion in large-scale networks. Phys. Rev. Lett. 109(6), 068702 (2012)CrossRefADSGoogle Scholar
  78. 78.
    Zhao, L.J., Wang, Q., Cheng, J.J., Zhang, D., Ma, T., Chen, Y.C., Wang, J.J.: The impact of authorities’ media and rumor dissemination on the evolution of emergency. Physica A 391(15), 3978–3987 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Management Science and EngineeringAnhui University of TechnologyMa’anshanPeople’s Republic of China
  2. 2.Center for Corporate Governance and OperationAnhui University of TechnologyMa’anshanPeople’s Republic of China

Personalised recommendations