Advertisement

Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise

  • N. V. Antonov
  • P. I. KakinEmail author
  • N. M. Lebedev
Article
  • 27 Downloads

Abstract

A new “static” renormalization group approach to stochastic models of fluctuating surfaces with spatially quenched noise is proposed in which only time-independent quantities are involved. As examples, quenched versions of the Kardar–Parisi–Zhang model and its Pavlik’s modification, the Hwa–Kardar model of self-organized criticality, and Pastor–Satorras–Rothman model of landscape erosion are studied. It is shown that the logarithmic dimension in the quenched models is shifted by two units upwards in comparison to their counterparts with white in-time noise. Possible scaling regimes associated with fixed points of the renormalization group equations are found and the critical exponents are derived to the leading order of the corresponding \(\varepsilon \) expansions. Some exact values and relations for these exponents are obtained.

Keywords

Renormalization group Critical scaling Self-organized criticality Stochastic growth Critical exponents 

Notes

Acknowledgements

We are thankful to C. Duclut for bringing the work [42] to our attention. We also thank L. Ts. Adzhemyan, N.M. Gulitskiy, M. Hnatich, M.V. Kompaniets, and M.Yu. Nalimov for fruitful discussions. We are also thankful to the referees for useful comments and suggestions. The work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”, and by the RFBR according to the research project 18-32-00238 (all the results concerning the KPZ model in Sect. 3).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Krug, J., Spohn, H.: Kinetic roughening of growing surfaces. In: Godreche, C. (ed.) Solids Far from Equilibrium, pp. 479–582. Cambridge University Press, Cambridge (1990)Google Scholar
  2. 2.
    Halpin-Healy, T., Zhang, Y.-C.: Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 254, 215–414 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    Barabási, A.-L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995)zbMATHCrossRefGoogle Scholar
  4. 4.
    Krug, J.: Origins of scale invariance in growth processes. Adv. Phys. 46, 139–282 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Lässig, M.: On growth, disorder, and field theory. J. Phys. 10, 9905–9950 (1998)Google Scholar
  6. 6.
    Eden, M.: A two-dimensional growth process. Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 4, pp. 223–239. Cambridge University Press, Cambridge (1961)Google Scholar
  7. 7.
    Kim, J.M., Kosterlitz, J.M., Ala-Nissila, T.: Surface growth and crossover behaviour in a restricted solid-on-solid model. J. Phys. A 24, 5569–5586 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    Penrose, M.D.: Growth and roughness of the interface for ballistic deposition. J. Stat. Phys. 131, 247–268 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Pastor-Satorras, R., Rothman, D.H.: Stochastic equation for the erosion of inclined topography. Phys. Rev. Lett. 80, 4349–4352 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Pastor-Satorras, R., Rothman, D.H.: Scaling of a slope: the erosion of tilted landscapes. J. Stat. Phys. 93, 477–500 (1998)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Kirkby, M.J.: Hillslope process-response models based on the continuity equation. In: Kirkby, M.J. (ed.) Slopes: Form and Process, pp. 15–29. Institute of British Geographers, London (1971)Google Scholar
  12. 12.
    Scheidegger, A.E.: Theoretical Geomorphology, 3rd edn. Springer, New York (1991)CrossRefGoogle Scholar
  13. 13.
    Rodriguez-Iturbe, I., Rinaldo, A.: Fractal River Basins: Chance and Self-organization. Cambridge University Press, Cambridge (1997)Google Scholar
  14. 14.
    Howard, A.D., Kerby, G.: Channel changes in badlands. Geol. Soc. Am. Bull. 94, 739–752 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    Kirchner, J.W.: Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks. Geology 21, 591–594 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Willgoose, G., Bras, R.L., Rodriguez-Iturbe, I.: A coupled channel network growth and hillslope evolution model: 1. Theory. Water Resour. Res. 27(7), 1671–1684 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    Loewenherz, D.S.: Stability and the initiation of channelized surface drainage: a reassessment of the short wavelength limit. J. Geophys. Res. 96, 8453–8464 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    Howard, A.D.: A detachment-limited model of drainage basin evolution. Water Resour. Res. 30, 2261–2285 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Howard, A.D., Dietrich, W.E., Seidl, M.A.: Modeling fluvial erosion on regional to continental scales. J. Geophys. Res. 99, 13971–13986 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    Izumi, N., Parker, G.: Inception of channelization and drainage basin formation: upstream-driven theory. J. Fluid Mech. 283, 341–363 (1995)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Giacometti, A., Maritan, A., Banavar, J.R.: Continuum model for river networks. Phys. Rev. Lett. 75, 577–580 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    Banavar, J.R., Colaiori, F., Flammini, A., Giacometti, A., Maritan, A., Rinaldo, A.: Sculpting of a fractal river basin. Phys. Rev. Lett. 78, 4522–4525 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    Somfai, E., Sander, L.M.: Scaling and river networks: a Landau theory for erosion. Phys. Rev. E 56, R5–R8 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    Sornette, D., Zhang, Y.-C.: Non-linear Langevin model of geomorphic erosion processes. Geophys. J. Int. 113, 382–386 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    Kramer, S., Marder, M.: Evolution of river networks. Phys. Rev. Lett. 68, 205–208 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    Dodds, P.S., Rothman, D.H.: Scaling, universality, and geomorphology. Annu. Rev. Earth Planet Sci. 28, 571–610 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    Giacometti, A.: Local minimal energy landscapes in river networks. Phys. Rev. E 62, 6042–6051 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    Chan, K.K., Rothman, D.H.: Coupled length scales in eroding landscapes. Phys. Rev. E 63, 055102(R) (2001)ADSCrossRefGoogle Scholar
  29. 29.
    Newman, W.I., Turcotte, D.L.: Cascade model for fluvial geomorphology. Geophys. J. Int. 100, 433–439 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    Turcotte, D.L.: Fractals and Chaos in Geology and Geophysics. Cambridge University Press, New York (1992)zbMATHGoogle Scholar
  31. 31.
    Mark, D.M., Aronson, P.B.: Scale-dependent fractal dimensions of topographic surfaces: an empirical investigation, with applications in geomorphology and computer mapping. Math. Geol. 16, 671–683 (1984)CrossRefGoogle Scholar
  32. 32.
    Matsushita, M., Ouchi, S.: On the self-affinity of various curves. Physica (Amsterdam) 38D, 246–251 (1989)ADSMathSciNetGoogle Scholar
  33. 33.
    Matsushita, M., Ouchi, S.: Measurement of self-affinity on surfaces as a trial application of fractal geometry to landform analysis. Geomorphology 5, 115–130 (1992)ADSCrossRefGoogle Scholar
  34. 34.
    Chase, C.G.: Fluvial landsculpting and the fractal dimension of topography. Geomorphology 5, 39–57 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    Lifton, N.A., Chase, C.G.: Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains. California. Geomorphology 5, 77–114 (1992)ADSCrossRefGoogle Scholar
  36. 36.
    Barenblatt, G.I., Zhivago, A.V., Neprochnov, YuP, Ostrovskiy, A.A.: The fractal dimension: a quantitative characteristic of ocean-bottom relief. Oceanology 24, 695–697 (1984)Google Scholar
  37. 37.
    Gilbert, L.E.: Are topographic data sets fractal? Pure Appl. Geophys. 131, 241–254 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    Norton, D., Sorenson, S.: Variations in geometric measures of topographic surfaces underlain by fractured granitic plutons. Pure Appl. Geophys. 131, 77–97 (1989)ADSCrossRefGoogle Scholar
  39. 39.
    Czirok, A., Somfai, E., Vicsek, J.: Experimental evidence for self-affine roughening in a micromodel of geomorphological evolution. Phys. Rev. Lett. 71, 2154–2157 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    Antonov, N.V., Kakin, P.I.: Scaling in erosion of landscapes: renormalization group analysis of a model with turbulent mixing. J. Phys. A 50, 085002 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Antonov, N.V., Kakin, P.I.: Scaling in landscape erosion: renormalization group analysis of a model with infinitely many couplings. Theor. Math. Phys. 190(2), 193–203 (2017)zbMATHCrossRefGoogle Scholar
  42. 42.
    Duclut, C., Delamotte, B.: Nonuniversality in the erosion of tilted landscapes. Phys. Rev. E 96, 012149 (2017)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Berges, J., Tetradis, N., Wetterich, C.: Non-perturbative renormalization flow in quantum field theory and statistical physics. Phys. Rep. 363, 223–386 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Gies, H.: Introduction to the functional RG and applications to gauge theories. Lect. Notes Phys. 852, 287–348 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Delamotte, B.: An introduction to the nonperturbative renormalization group. Lect. Notes Phys. 852, 49–132 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Edwards, S.F., Wilkinson, D.R.: The surface statistics of a granular aggregate. Proc. R. Soc. Lond. A 381, 17–31 (1982)ADSCrossRefGoogle Scholar
  47. 47.
    Caldarelli, G., Giacometti, A., Maritan, A., Rodriguez-Iturbe, I., Rinaldo, A.: Randomly pinned landscape evolution. Phys. Rev. E 55(5), R4865(R) (1997)ADSCrossRefGoogle Scholar
  48. 48.
    Hinrichsen, H.: Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49, 815–958 (2000)ADSCrossRefGoogle Scholar
  49. 49.
    Lee, C., Kim, J.M.: Depinning transition of the quenched Kardar–Parisi–Zhang equation. J. Korean Phys. Soc. 47(1), 13–17 (2005)Google Scholar
  50. 50.
    Jeong, H., Kahng, B., Kim, D.: Anisotropic surface growth model in disordered media. Phys. Rev. Lett. 25, 5094–5097 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    Kim, H.-J., Kim, I.-M., Kim, J.M.: Hybridized discrete model for the anisotropic Kardar–Parisi–Zhang equation. Phys. Rev. E 58, 1144–1147 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    Narayan, O., Fisher, D.S.: Threshold critical dynamics of driven interfaces in random media. Phys. Rev. B 48(1), 7030–7042 (1993)ADSCrossRefGoogle Scholar
  53. 53.
    Janssen, H.K.: Renormalized field theory of the Gribov process with quenched disorder. Phys. Rev. E 55(5), 6253–6256 (1997)ADSCrossRefGoogle Scholar
  54. 54.
    Moreira, A.G., Dickman, R.: Critical dynamics of the contact process with quenched disorder. Phys. Rev. E 54, R3090 (1996)ADSCrossRefGoogle Scholar
  55. 55.
    Webman, I., ben Avraham, D., Cohen, A., Havlin, S.: Dynamical phase transitions in a random environment. Phil. Mag. B 77, 1401–1412 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)ADSzbMATHCrossRefGoogle Scholar
  57. 57.
    Pavlik, S.I.: Scaling for a growing phase boundary with nonlinear diffusion. JETP 79, 303–306 (1994)ADSGoogle Scholar
  58. 58.
    Antonov, N.V., Vasil’ev, A.N.: The quantum-field renormalization group in the problem of a growing phase boundary. JETP 81, 485–489 (1995)ADSGoogle Scholar
  59. 59.
    Hwa, T., Kardar, M.: Dissipative transport in open systems: an investigation of self-organized criticality. Phys. Rev. Lett. 62(16), 1813–1816 (1989)ADSCrossRefGoogle Scholar
  60. 60.
    Vasiliev, A.N.: The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics. Chapman & Hall/CRC, Boca Raton (2004)CrossRefGoogle Scholar
  61. 61.
    Martin, P.C., Siggia, E.D., Rose, H.A.: Statistical dynamics of classical systems. Phys. Rev. A 8, 423–437 (1973)ADSCrossRefGoogle Scholar
  62. 62.
    De Dominicis, C.: Techniques de renormalisation de la theorie des champs et dynamique des phenomenes critiques. J. Phys. (Paris) C 1, 247–253 (1976)Google Scholar
  63. 63.
    Janssen, H.-K.: On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties. Z. Phys. B 23, 377–380 (1976)ADSCrossRefGoogle Scholar
  64. 64.
    Bausch, R., Janssen, H.-K., Wagner, H.: Renormalized field theory of critical dynamics. Z. Phys. B 24, 113–127 (1976)ADSCrossRefGoogle Scholar
  65. 65.
    Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena. Clarendon, Oxford (1989)zbMATHGoogle Scholar
  66. 66.
    Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. North-Holland, New York (2007)zbMATHGoogle Scholar
  67. 67.
    Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th edn. Springer, New York (2009)zbMATHGoogle Scholar
  68. 68.
    Kakin, P.I., Lebedev, N.M.: Critical behavior of certain non-equilibrium systems with a quenched random noise. Vestnik SPbSU. Phys. Chem. 4(62), 398–416 (2017)Google Scholar
  69. 69.
    Parisi, G., Sourlas, N.: Random magnetic fields, supersymmetry, and negative dimensions. Phys. Rev. Lett. 43, 744–745 (1979)ADSCrossRefGoogle Scholar
  70. 70.
    Parisi, G., Sourlas, N.: Supersymmetric field theories and stochastic differential equations. Nucl. Phys. B 206, 321–332 (1982)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Popov, V.N.: Functional Integrals in Quantum Field Theory and Statistical Physics. Springer, New York (1983)zbMATHCrossRefGoogle Scholar
  72. 72.
    Faddeev, L.D., Slavnov, A.A.: Gauge Fields: An Introduction to Quantum Theory. CRC, Boca Raton (1993)Google Scholar
  73. 73.
    Kardar, M., Zhang, Y.-C.: Scaling of directed polymers in random media. Phys. Rev. Lett. 58, 2087–2090 (1987)ADSCrossRefGoogle Scholar
  74. 74.
    Bouchaud, J.P., Mézard, M., Parisi, G.: Scaling and intermittency in Burgers turbulence. Phys. Rev. E 52, 3656–3674 (1995)ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    Frey, E., Täuber, U.C., Hwa, T.: Mode-coupling and renormalization group results for the noisy Burgers equation. Phys. Rev. E 53, 4424–4438 (1996)ADSCrossRefGoogle Scholar
  76. 76.
    Medina, E., Hwa, T., Kardar, M., Zhang, Y.-C.: Burgers equation with correlated noise: renormalization-group analysis and applications to directed polymers and interface growth. Phys. Rev. A 39, 3053–3075 (1989)ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    Lam, C.-H., Sander, L.M.: Surface growth with temporally correlated noise. Phys. Rev. A 46, R6128 (1992)ADSCrossRefGoogle Scholar
  78. 78.
    Doherty, J.P., Moore, M.A., Kim, J.M., Bray, A.J.: Generalizations of the Kardar–Parisi–Zhang equation. Phys. Rev. Lett. 72, 2041–2044 (1994)ADSzbMATHCrossRefGoogle Scholar
  79. 79.
    Kardar, M., Zee, A.: Matrix generalizations of some dynamic field theories. Nucl. Phys. B 464, 449–462 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Bork, L.V., Ogarkov, S.L.: The Kardar–Parisi–Zhang equation and its matrix generalization. Theor. Math. Phys. 178, 359–373 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Antonov, N.V., Kakin, P.I.: Random interface growth in a random environment: renormalization group analysis of a simple model. Theor. Math. Phys. 185(1), 1391–1407 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Niggemann, O., Hinrichsen, H.: Sinc noise for the Kardar–Parisi–Zhang equation. Phys. Rev. E 97, 062125 (2018)ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    Wolf, D.E.: Kinetic roughening of vicinal surfaces. Phys. Rev. Lett. 67, 1783–1786 (1991)ADSCrossRefGoogle Scholar
  84. 84.
    Kloss, T., Canet, L., Wschebor, N.: Strong-coupling phases of the anisotropic Kardar–Parisi–Zhang equation. Phys. Rev. E 90(6), 062133 (2014)ADSCrossRefGoogle Scholar
  85. 85.
    Antonov, N.V., Kakin, P.I.: Field-Theoretic ronormalization group in a model of anisotropic grows of an interface. Vestnik SPbSU. Phys. Chem. 3(61), 348–361 (2016)Google Scholar
  86. 86.
    Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732–749 (1977)ADSMathSciNetCrossRefGoogle Scholar
  87. 87.
    Frey, E., Täuber, U.C.: Two-loop renormalization-group analysis of the Burgers–Kardar–Parisi–Zhang equation. Phys. Rev. E 50, 1024–1045 (1994)ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    Lässig, M.: On the renormalization of the Kardar–Parisi–Zhang equation. Nucl. Phys. B 448, 559–574 (1995)ADSCrossRefGoogle Scholar
  89. 89.
    Wiese, K.J.: On the perturbation expansion of the KPZ equation. J. Stat. Phys. 93, 143–154 (1998)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Canet, L., Chaté, H., Delamotte, B., Wschebor, N.: Nonperturbative renormalization group for the Kardar–Parisi–Zhang equation. Phys. Rev. Lett. 104, 150601 (2010)ADSCrossRefGoogle Scholar
  91. 91.
    Kloss, T., Canet, L., Wschebor, N.: Nonperturbative renormalization group for the stationary Kardar–Parisi–Zhang equation: scaling functions and amplitude ratios in 1+1, 2+1, and 3+1 dimensions. Phys. Rev. E 86, 051124 (2012)ADSCrossRefGoogle Scholar
  92. 92.
    Amit, D.J.: Field Theory, Renormalization Group, and Critical Phenomena, 2nd edn. World Scientific, Singapore (1984)Google Scholar
  93. 93.
    Ramond, P.: Field Theory: A Modern Primer. Benjamin/Cummings Publishing Company, San Francisco (1981)zbMATHGoogle Scholar
  94. 94.
    Imbrie, I.Z., Spencer, T.: Diffusion of directed polymers in a random environment. J. Stat. Phys. 52, 609–626 (1988)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Cook, J., Derrida, B.: Directed polymers in a random medium: 1/d expansion. Europhys. Lett. 10, 195–199 (1989)ADSCrossRefGoogle Scholar
  96. 96.
    Evans, M.R., Derrida, B.: Improved bounds for the transition temperature of directed polymers in a finite-dimensional random medium. J. Stat. Phys. 69, 427–437 (1992)ADSzbMATHCrossRefGoogle Scholar
  97. 97.
    Tang, L.-H., Nattermann, T., Forrest, B.M.: Multicritical and crossover phenomena in surface growth. Phys. Rev. Lett. 65, 2422–2425 (1990)ADSCrossRefGoogle Scholar
  98. 98.
    Nattermann, T., Tang, L.-H.: Kinetic surface roughening. I. The Kardar–Parisi–Zhang equation in the weak-coupling regime. Phys. Rev. A 45, 7156–7161 (1992)ADSCrossRefGoogle Scholar
  99. 99.
    Doty, C.A., Kosterlitz, J.M.: Exact dynamical exponent at the Kardar–Parisi–Zhang roughening transition. Phys. Rev. Lett. 69, 1979–1981 (1992)ADSCrossRefGoogle Scholar
  100. 100.
    Cook, J., Derrida, B.: Directed polymers in a random medium: 1/d expansion and the n-tree approximation. J. Phys. A 23, 1523–1554 (1990)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Lässig, M., Kinzelbach, H.: Upper critical dimension of the Kardar–Parisi–Zhang equation. Phys. Rev. Lett. 78, 903–906 (1997)ADSCrossRefGoogle Scholar
  102. 102.
    Colaiori, F., Moore, M.: Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the Kardar–Parisi–Zhang equation. Phys. Rev. Lett. 86, 3946–3949 (2001)ADSCrossRefGoogle Scholar
  103. 103.
    Fogedby, H.C.: Localized growth modes, dynamic textures, and upper critical dimension for the Kardar–Parisi–Zhang equation in the weak-noise limit. Phys. Rev. Lett. 94, 195702 (2005)ADSCrossRefGoogle Scholar
  104. 104.
    Fogedby, H.C.: Kardar–Parisi–Zhang equation in the weak noise limit: pattern formation and upper critical dimension. Phys. Rev. E 73, 031104 (2006)ADSMathSciNetCrossRefGoogle Scholar
  105. 105.
    Fogedby, H.C.: Patterns in the Kardar–Parisi–Zhang equation. J. Phys. (Pramana) 71, 253–262 (2008)ADSCrossRefGoogle Scholar
  106. 106.
    Katzav, E., Schwartz, M.: Existence of the upper critical dimension of the Kardar–Parisi–Zhang equation. Physica A 309, 69–78 (2002)ADSzbMATHCrossRefGoogle Scholar
  107. 107.
    Schwartz, M., Perlsman, E.: Upper critical dimension of the Kardar–Parisi–Zhang equation. Phys. Rev. E 85, 050103(R) (2012)ADSCrossRefGoogle Scholar
  108. 108.
    Marinari, E., Pagnani, A., Parisi, G., Raćz, Z.: Width distributions and the upper critical dimension of Kardar–Parisi–Zhang interfaces. Phys. Rev. E 65, 026136 (2002)ADSCrossRefGoogle Scholar
  109. 109.
    Alves, S.G., Oliveira, T.J., Ferreira, S.C.: Universality of fluctuations in the Kardar–Parisi–Zhang class in high dimensions and its upper critical dimension. Phys. Rev. E 90, 020103(R) (2014)ADSCrossRefGoogle Scholar
  110. 110.
    Antonov, N.V.: The renormalization group in the problem of turbulent convection of a passive scalar impurity with nonlinear diffusion. JETP 85, 898–906 (1997)ADSCrossRefGoogle Scholar
  111. 111.
    Srednicky, M.: Quantum Field Theory, p. 371. Cambridge University Press, Cambridge (2012)Google Scholar
  112. 112.
    Halperin, B.I., Lubensky, T.C., Ma, S.K.: First-order phase transitions in superconductors and smectic-A liquid crystals. Phys. Rev. Lett. 32, 292–295 (1974)ADSCrossRefGoogle Scholar
  113. 113.
    Dudka, M., Folk, R., Moser, G.: Gauge dependence of the critical dynamics at the superconducting phase transition. Condens. Matter Phys. 10(2), 189–200 (2007)CrossRefGoogle Scholar
  114. 114.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)ADSCrossRefGoogle Scholar
  115. 115.
    Tang, C., Bak, P.: Critical exponents and scaling relations for self-organized critical phenomena. Phys. Rev. Lett. 60, 2347–2350 (1988)ADSCrossRefGoogle Scholar
  116. 116.
    Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71, 4083–4086 (1993)ADSCrossRefGoogle Scholar
  117. 117.
    Bak, P.: How Nature Works: The Science of Self-organized Criticality. Copernicus, New York (1996)zbMATHCrossRefGoogle Scholar
  118. 118.
    Hwa, T., Kardar, M.: Avalanches, hydrodynamics, and discharge events in models of sandpiles. Phys. Rev. A 45, 7002–7023 (1992)ADSCrossRefGoogle Scholar
  119. 119.
    Antonov, N.V., Kakin, P.I.: Effects of random environment on a self-organized critical system: renormalization group analysis of a continuous model. EPJ. Web Conf. 108, 02009 (2016)CrossRefGoogle Scholar
  120. 120.
    Tadić, B.: Disorder-induced critical behavior in driven diffusive systems. Phys. Rev. E 58, 168–173 (1998)ADSCrossRefGoogle Scholar
  121. 121.
    Golner, G.R.: Investigation of the potts model using renormalization-group techniques. Phys. Rev. A 8, 3419–3422 (1973)ADSGoogle Scholar
  122. 122.
    Zia, R.K.P., Wallace, D.J.: Critical behaviour of the continuous n-component Potts model. J. Phys. A 8, 1495–1507 (1975)ADSCrossRefGoogle Scholar
  123. 123.
    Amit, D.J.: Renormalization of the Potts model. J. Phys. A 9, 1441–1459 (1976)ADSCrossRefGoogle Scholar
  124. 124.
    de Alcantara Bonfim, O.F., Kirkham, J.E., McKane, A.J.: Critical exponents for the percolation problem and the Yang-Lee edge singularity. J. Phys. A 14, 2391–2413 (1981)ADSCrossRefGoogle Scholar
  125. 125.
    Prudnikov, V.V., Prudnikov, P.V., Vakilov, A.N.: Field-Theoretic and Numerical Description Methods for Critical Phenomena in Structure-Disordered Systems. F.M. Dostoevsky University, Omsk (2012)Google Scholar
  126. 126.
    Duclut, C., Delamotte, B.: Frequency regulators for the nonperturbative renormalization group: a general study and the model A as a benchmark. Phys. Rev. E 95, 012107 (2017)ADSMathSciNetCrossRefGoogle Scholar
  127. 127.
    Canet, L.: Strong-Coupling Fixed Point of the Kardar–Parisi–Zhang Equation. Arxiv:cond-mat/0509541 (2005)
  128. 128.
    Canet, L., Delamotte, B., Wschebor, N.: Fully developed isotropic turbulence: symmetries and exact identities. Phys. Rev. E 91, 053004 (2015)ADSMathSciNetCrossRefGoogle Scholar
  129. 129.
    Canet, L., Delamotte, B., Wschebor, N.: Fully developed isotropic turbulence: nonperturbative renormalization group formalism and fixed-point solution. Phys. Rev. E 93, 063101 (2016)ADSCrossRefGoogle Scholar
  130. 130.
    Canet, L., Chate, H., Delamotte, B., Wschebor, N.: Nonperturbative renormalization group for the Kardar–Parisi–Zhang equation: general framework and first applications. Phys. Rev. E 84, 061128 (2011)ADSCrossRefGoogle Scholar
  131. 131.
    Kloss, T., Canet, L., Delamotte, B., Wschebor, N.: Kardar–Parisi–Zhang equation with spatially correlated noise: a unified picture from nonperturbative renormalization group. Phys. Rev. E 89, 022108 (2014)ADSCrossRefGoogle Scholar
  132. 132.
    Squizzato, D., Canet, L.: Kardar–Parisi–Zhang Equation with temporally correlated noise: a non-perturbative renormalization group approach. arXiv: 1907.02256
  133. 133.
    Canet, L., Chate, H., Delamotte, B.: General framework of the non-perturbative renormalization group for non-equilibrium steady states. J. Phys. A 44, 495001 (2011)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSaint Petersburg State UniversitySaint PetersburgRussia
  2. 2.N.N. Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations