Advertisement

The BEG Model in the Disordered Region and at the Antiquadrupolar-Disordered Line of Parameters

  • Paulo C. LimaEmail author
Article
  • 25 Downloads

Abstract

We analyse the d-dimensional BEG model with \(d\ge 2\) and parameters in the disordered region and at the antiquadrupolar-disordered line. We obtain a subset of these regions for which the odd correlation functions are zero and the even ones decay exponentially fast, at all non-zero temperatures, for a wide class of boundary conditions.

Keywords

BEG model Disordered region Antiquadrupolar-disordered line High temperature representation Exponential decay of correlations 

Notes

Acknowledgements

I would like to thank Aernout van Enter for reading the manuscript and the anonymous referees for their patience and their valuable suggestions and comments which much contributed for improving this article.

References

  1. 1.
    Blume, M., Emery, V.J., Griffiths, R.B.: Ising model for the \(\lambda \) transition and phase separation in \(He^3-He^4\) mixtures. Phys. Rev. A 4(3), 1071–1077 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    Mukamel, D., Blume, M.: Ising model for tricritical points in ternary mixtures. Phys. Rev. A 10, 610–617 (1974)ADSCrossRefGoogle Scholar
  3. 3.
    Furman, D., Duttagupta, S., Griffiths, R.B.: Global phase diagram for a three-component model. Phys. Rev. B 15, 441–464 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    Griffiths, R. B.: First-order phase transitions in spin-one Ising systems. Physica 33, 689-690 (1967) and references there inADSCrossRefGoogle Scholar
  5. 5.
    Sivardiere, J., Blume, M.: Dipolar and quadrupolar ordering in \(S=3/2\) Ising systems. Phys. Rev. B 5, 1126–1134 (1972)ADSCrossRefGoogle Scholar
  6. 6.
    Schick, M., Shih, W.: Spin-1 model of a microemulsion. Phys. Rev. B 34, 1797–1801 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    Van Hove, L.: Sur l’intégrale de configuration pour les systèmes de particules à une dimension. Physica 16, 137–143 (1950)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ruelle, D.: Statistical Mechanics: Rigorous Results. W. A. Benjamin, Inc., Menlo Park (1974)zbMATHGoogle Scholar
  9. 9.
    Braga, G.A., Lima, P.C., O’Carroll, M.L.: Low temperature properties of the Blume-Emery-Griffiths (BEG) Model in the region with an finite number of ground state configurations. Rev. Math. Phys. 12(6), 779–806 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sinai, Y.: Theory of Phase Transitions: Rigorous Results. Pergameon Press, Oxford (1982)Google Scholar
  11. 11.
    Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  12. 12.
    Zahradnik, M.: An alternate version of Pirogov-Sinai theorey. Commun. Math. Phys. 93, 559–581 (1984)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Coquille, L., Duminil-Copin, H., Ioffe, D., Velenik, Y.: On the Gibbs states of the noncritical Potts model on \({\mathbb{Z}}^2\). Probab Theory Relat Fields 158(1–2), 477–512 (2014)CrossRefGoogle Scholar
  14. 14.
    Gruber, C., Suto, A.: Phase diagrams of lattice systems with residual entropy. J. Stat. Phys. 52, 113–141 (1988)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Braga, G.A., Lima, P.C.: On the residual entropy of the Blume-Emery-Griffiths. J. Stat. Phys 130, 571–578 (2008)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Lima, P.C., Neves, A.G.M.: On the residual entropy of the \(BEG\) model at the antiquadrupolar-ferromagnetic coexistence line. J. Stat. Phys. 144, 749–758 (2011)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hoston, W., Berker, A.N.: Multicritical phase diagrams of the Blume-Emery-Griffiths model with repusilve biquadratic coupling. Phys. Rev. Lett. 67, 1027–1030 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    Hoston, W., Berker, A.N.: Dimensionality effects on the multicritical phase diagrams of the Blume-Emery-Griffiths model with repulsive biquadratic coupling: mean-field and renormalization-group studies. J. Appl. Phys. 70, 6101–6104 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    Osorio, R., Oliveira, M.J., Salinas, S.R.: The Blume-Emery-Griffiths model on a Bethe lattice: bicritical line and re-entrant behaviour. J. Phys.: Condens. Matter 1, 6887–6892 (1989)ADSGoogle Scholar
  20. 20.
    Branco, N.S.: Blume-Emery-Griffiths model on the square lattice with repulsive biquadratic coupling. Physica A 232, 477–486 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Fortuin, C.M., Ginibre, J., Kasteleyn, P.W.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89–103 (1971)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Lebowitz, J.L., Monroe, J.L.: Inequalities for higher order ising spins and for continuum fluids. Commun. Math. Phys. 28, 301–311 (1972)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Braga, G.A., Lima, P.C.: The Blume-Emery-Griffiths model at an infinitely many ground states interface and exponential decay of correlations at all non-zero temperatures. J. Phys. A 36, 9609–9615 (2003)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Braga, G.A., Lima, P.C.: ADDENDUM The Blume-Emery-Griffiths model at an infinitely many ground states interface and exponential decay of correlations at all non-zero temperatures. J. Phys. A 36, 1459–1460 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Lima, P.C.: Low temperature analysis of correlation functions of the Blume-Emery-Griffiths Model at the antiquadrupolar-disordered interface. J. Stat. Phys. 165(3), 645–660 (2016)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Dobrushin, R.L.: The description of the random field by means of conditional probabilities and conditions of its regularity. Theory Probab. Appl. 13, 197–224 (1968)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lima, P. C.: Uniqueness of the Gibbs state of the BEG model in the disordered region of parameters (in preparation) Google Scholar
  28. 28.
    Morais, T., Procacci, A.: Absence of phase transitions in a class of integer spin systems. J. Stat. Phys. 136, 677–684 (2009)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Kotecky, R., Preiss, D.: Cluster expansion for abstract polymer models. Commun. Math. Phys. 103(3), 491–498 (1986)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticaICEX - UFMGBelo HorizonteBrazil

Personalised recommendations