Advertisement

Computation of Extreme Values of Time Averaged Observables in Climate Models with Large Deviation Techniques

  • Francesco RagoneEmail author
  • Freddy Bouchet
Article
  • 22 Downloads

Abstract

One of the goals of climate science is to characterize the statistics of extreme and potentially dangerous events in the present and future climate. Extreme events like heat waves, droughts, or floods due to persisting rains are characterized by large anomalies of the time average of an observable over a long time. The framework of Donsker–Varadhan large deviation theory could therefore be useful for their analysis. In this paper we discuss how concepts and numerical algorithms developed in the context of with large deviation theory can be applied to study extreme, rare fluctuations of time averages of surface temperatures at regional scale with comprehensive numerical climate models. When performing this type of analysis, unless a rigorous study of the convergence to the large deviation limit is performed, it can be easy to be misled in thinking to have reached the asymptotic regime. In this paper we provide a systematic protocol to study the convergence of large deviation functions tailored for applications to climate problems. Referring to the existing literature on the subject, we provide explicit formulas to compute large deviation functions directly from time series of a deterministic dynamical system that can be applied to climate records, and we describe how to study the convergence. We show how using a rare event algorithm applied to a numerical model can improve the efficiency of the computation of the large deviation functions. As a case study we consider the time averaged European surface temperature obtained with the numerical climate model Plasim. We show how a precise analysis of the convergence leads to the conclusion that the large deviation limit is nor properly reached for time scales shorter than a few years, and is therefore of no practical interest to study midlatitude heat waves. Finally we show how, even in a case like this, rare event algorithms developed to study large deviation functions can be used to improve the statistics of events on time scales shorter than the one needed to reach the large deviation asymptotic regime.

Keywords

Large deviation theory Rare event algorithms Climate extremes Heat waves 

Notes

Acknowledgements

The authors thank the editor and two anonymous reviewers for their constructive criticism and suggestions. The research leading to these results has received funding from the European Research Council under the European Union’s seventh Framework Programme (FP7/2007-2013 Grant Agreement No. 616811). The simulations have been performed on the machines of the Pôle Scientifique de Modélisation Numérique (PSMN) and of the Centre Informatique National de l’Enseignement Supérieur (CINES).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    AghaKouchak, A.: Extremes in a Changing Climate Detection, Analysis and Uncertainty. Springer, Dordrecht (2012)Google Scholar
  2. 2.
    Ailliot, P., Allard, D., Monbet, V., Naveau, P.: Stochastic weather generators: an overview of weather type models. Journal de la Societe Francaise de Statistique 156(1), 101–113 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bouchet, F., Marston, J.B., Tangarife, T.: Fluctuations and large deviations of reynolds stresses in zonal jet dynamics. Phys. Fluids 30(1), 015110 (2018).  https://doi.org/10.1063/1.4990509 ADSCrossRefGoogle Scholar
  4. 4.
    Bucklew, J.A.: An Introduction to Rare Event Simulation. Springer, New York (2004)CrossRefGoogle Scholar
  5. 5.
    Coles, S.: An Introduction to Statistical Modeling of Extreme Values. Springer, New York (2001)CrossRefGoogle Scholar
  6. 6.
    Del Moral, P.: Feynman–Kac Formulae Genealogical and Interacting Particle Systems with Applications. Springer, New York (2004)zbMATHGoogle Scholar
  7. 7.
    Del Moral, P., Garnier, J.: Genealogical particle analysis of rare events. Ann. Appl. Prob. 15(4), 2496–2534 (2005).  https://doi.org/10.1214/105051605000000566 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dembo, A., Zeitouni, O.: Large Deviations and Applications. Handbook of stochastic analysis and application. CRC Press, Boca Raton (2001)zbMATHGoogle Scholar
  9. 9.
    Donsker, M.D., Varadhan, S.S.: Asymptotic evaluation of certain markov process expectations for large time, I. Commun. Pure Appl. Math. 28(1), 1–47 (1975)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Eliasen, E., Machenhauer, B., Rasmussen, E.: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Københavns University, Copenhagen, Technical report, Inst. of Theor. Met. (1970)Google Scholar
  11. 11.
    Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Springer, New York (2007)Google Scholar
  12. 12.
    Fischer, E.M., Seneviratne, S.I., Vidale, P.L., Luthi, D., Schaer, C.: Soil moisture–atmosphere interactions during the 2003 european summer heat wave. J. Clim. 20(20), 5081–5099 (2007).  https://doi.org/10.1175/JCLI4288.1 ADSCrossRefGoogle Scholar
  13. 13.
    Fraedrich, K., Jansen, H., Luksch, U., Lunkeit, F.: The planet simulator: towards a user friendly model. Meteorol. Z. 14, 299–304 (2005)CrossRefGoogle Scholar
  14. 14.
    Galfi, V.M., Lucarini, V., Wouters, J.: A large deviation theory-based analysis of heat waves and cold spells in a simplified model of the general circulation of the atmosphere. J. Stat. Mech. 2019(3), 033404 (2019).  https://doi.org/10.1088/1742-5468/ab02e8 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ghil, M., Yiou, P., Hallegatte, S., Malamud, B., Naveau, P., Soloviev, A., Friederichs, P., Keilis-Borok, V., Kondrashov, D., Kossobokov, V., Mestre, O., Nicolis, C., Rust, H., Shebalin, P., Vrac, M., Witt, A., Zaliapin, I.: Extreme events: dynamics, statistics and prediction. Nonlinear Process. Geophys. 18(3), 295–350 (2011).  https://doi.org/10.5194/npg-18-295-2011 ADSCrossRefGoogle Scholar
  16. 16.
    Giardina, C., Kurchan, J., Peliti, L.: Direct evaluation of large-deviation functions. Phys. Rev. Lett. 96(12), 120603 (2006).  https://doi.org/10.1103/PhysRevLett.96.120603 ADSCrossRefGoogle Scholar
  17. 17.
    Giardina, C., Kurchan, J., Lecomte, V., Tailleur, J.: Simulating rare events in dynamical processes. J. Stat. Phys. 145(4), 787–811 (2011).  https://doi.org/10.1007/s10955-011-0350-4 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    IPCC: Managing the risks of extreme events and disasters to advance climate change adaption: special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, NY (2012)Google Scholar
  19. 19.
    IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013)Google Scholar
  20. 20.
    Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling. Natl. Bur. Stand. Appl. Math. Ser. 12, 27–30 (1951)Google Scholar
  21. 21.
    Kifer, Y.: Large deviations in dynamical systems and stochastic processes. Trans. Am. Math. Soc. 321(2), 505–524 (1990)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kuo, H.L.: On formations and intensification of tropical cyclone through latent heat release by cumulus convection. J. Atmos. Sci. 22, 40–63 (1965)ADSCrossRefGoogle Scholar
  23. 23.
    Kuo, H.L.: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci. 31(5), 1232–1240 (1974)ADSCrossRefGoogle Scholar
  24. 24.
    Lacis, A.A., Hansen, J.: A parameterization for the absorption of solar radiation in the Earth?s atmosphere. J. Atmos. Sci. 31(1), 118–133 (1974)ADSCrossRefGoogle Scholar
  25. 25.
    Laursen, L., Eliasen, E.: On the effects of the damping mechanisms in an atmospheric general circulation model. Tellus 41, 385–400 (1989)CrossRefGoogle Scholar
  26. 26.
    Lecomte, V., Tailleur, J.: A numerical approach to large deviations in continuous time. J. Stat. Mech. 2007(03), P03004 (2007).  https://doi.org/10.1088/1742-5468/2007/03/P03004 CrossRefzbMATHGoogle Scholar
  27. 27.
    Lestang, T., Ragone, F., Brehier, C.E., Herbert, C., Bouchet, F.: Computing return times or return periods with rare event algorithms. J. Stat. Mech. 2018(4), 043213 (2018).  https://doi.org/10.1088/1742-5468/aab856 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lorenz, R., Jaeger, E.B., Seneviratne, S.I.: Persistence of heat waves and its link to soil moisture memory. Geophys. Res. Lett. 37(9), L09703 (2010).  https://doi.org/10.1029/2010GL042764 ADSCrossRefGoogle Scholar
  29. 29.
    Louis, J.F.: A parametric model of vertical eddy fluxes in the atmosphere. Bound. Layer Meteorol. 17(2), 187–202 (1979)ADSCrossRefGoogle Scholar
  30. 30.
    Louis, J.F., Tiedke, M., Geleyn, M.: A short history of the PBL parameterisation at ECMWF. In: Proceedings of the ECMWF Workshop on Planetary Boundary Layer Parameterization. pp. 59–80. Reading (1981)Google Scholar
  31. 31.
    Lucarini, V., Faranda, D., Freitas, A.C.G.M.M., Freitas, J.M.M., Holland, M., Kuna, T., Nicol, M., Todd, M., Vaienti, S.: Extremes and Recurrence in Dynamical Systems. Wiley, Hoboken (2016)CrossRefGoogle Scholar
  32. 32.
    Orszag, S.A.: Transform method for the calculation of vector-coupled sums: application to the spectral form of the vorticity equation. J. Atmos. Sci. 27(6), 890–895 (1970)ADSCrossRefGoogle Scholar
  33. 33.
    Pohorille, A., Jarzynski, C., Chipot, C.: Good practices in free-energy calculations. J. Phys. Chem. B 114, 10235–10253 (2010)CrossRefGoogle Scholar
  34. 34.
    Ragone, F., Wouters, J., Bouchet, F.: Computation of extreme heat waves in climate models using a large deviation algorithm. Proc. Natl. Acad. Sci. USA 115(1), 24–29 (2018).  https://doi.org/10.1073/pnas.1712645115 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U., Schubert, S., Windelband, M.: Simulation of present day climate with the ECHAM model: impact of model physics and resolution. Technical Report, 93. Technical report, Max Planck Institut für Meteorologie, Hamburg, (1992)Google Scholar
  36. 36.
    Rohwer, C.M., Angeletti, F., Touchette, H.: Convergence of large-deviation estimators. Phys. Rev. E 92, 052104 (2015).  https://doi.org/10.1103/PhysRevE.92.052104 ADSCrossRefGoogle Scholar
  37. 37.
    Rubino, G., Tuffin, B.: Rare Event Simulation Using Monte Carlo Methods. Wiley, Chichester (2009)CrossRefGoogle Scholar
  38. 38.
    Sasamori, T.: The radiative cooling calculation for application to general circulation experiments. J. Appl. Meteorol. 7(5), 721–729 (1968)ADSCrossRefGoogle Scholar
  39. 39.
    Semtner, A.J.: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr. 6(3), 379–389 (1976)ADSCrossRefGoogle Scholar
  40. 40.
    Slingo, A., Slingo, J.M.: Response of the National Center for Atmospheric Research community climate model to improvements in the representation of clouds. J. Geophys. Res. 96(D8), 15341 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    Stefanon, M., D’Andrea, F., Drobinski, P.: Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett. 7, 014023 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Stephens, G.L., Paltridge, G.W., Platt, C.M.R.: Radiation profiles in extended water clouds. III: observations. J. Atmos. Sci. 35(11), 2133–2141 (1978)ADSCrossRefGoogle Scholar
  43. 43.
    Stephens, G.L., Ackerman, S., Smith, E.A.: A shortwave parameterization revised to improve cloud absorption. J. Atmos. Sci. 41(4), 687–690 (1984)ADSCrossRefGoogle Scholar
  44. 44.
    Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478, 1–69 (2009)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Veneziano, D., Langousis, A., Lepore, C.: New asymptotic and preasymptotic results on rainfall maxima from multifractal theory. Water Resour. Res. 45(11), W11421 (2009).  https://doi.org/10.1029/2009WR008257 ADSCrossRefGoogle Scholar
  46. 46.
    Welch, P.D.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967)CrossRefGoogle Scholar
  47. 47.
    Wilks, D., Wilby, R.: The weather generation game: a review of stochastic weather models. Prog. Phys. Geogr. 23(3), 329–357 (1999)CrossRefGoogle Scholar
  48. 48.
    Young, L.S.: Large deviations in dynamical systems. Trans. Am. Math. Soc. 318(2), 525–543 (1990)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de PhysiqueUniv Lyon, ENS de Lyon, Univ Claude Bernard, CNRSLyonFrance

Personalised recommendations