Large Deviations and One-Sided Scaling Limit of Randomized Multicolor Box-Ball System
- 9 Downloads
Abstract
The basic \(\kappa \)-color box-ball (BBS) system is an integrable cellular automaton on one dimensional lattice whose local states take \(\{0,1,\ldots ,\kappa \}\) with 0 regarded as an empty box. The time evolution is defined by a combinatorial rule of quantum group theoretical origin, and the complete set of conserved quantities is given by a \(\kappa \)-tuple of Young diagrams. In the randomized BBS, a probability distribution on \(\{0,1,\ldots ,\kappa \}\) to independently fill the consecutive n sites in the initial state induces a highly nontrivial probability measure on the\(\kappa \)-tuple of those invariant Young diagrams. In a recent work Kuniba et al. (Nucl Phys B 937:240–271, 2018), their large n ‘equilibrium shape’ has been determined in terms of Schur polynomials by a Markov chain method and also by a very different approach of thermodynamic Bethe ansatz (TBA). In this paper, we establish a large deviations principle for the row lengths of the invariant Young diagrams. As a corollary, they are shown to converge almost surely to the equilibrium shape at an exponential rate. We also refine the TBA analysis and obtain the exact scaling form of the vacancy, the row length and the column multiplicity, which exhibit nontrivial factorization in a one-parameter specialization.
Keywords
Solitons Cellular automata Integrable systems Scaling limit Thermodynamic Bethe ansatzNotes
Acknowledgements
The authors appreciate valuable conversations with Frank Aurzada, Mikhail Lifshits, Masato Okado, and Makiko Sasada. Atsuo Kuniba is supported by Grants-in-Aid for Scientific Research No. 18H01141 from JSPS.
References
- 1.Croydon, D.A., Kato, T., Sasada, M., Tsujimoto, S.: Dynamics of the box-ball system with random initial conditions via pitman’s transformation. arXiv:1806.02147 (2018)
- 2.Dedecker, J., Rio, E.: On the functional central limit theorem for stationary processes. Ann. l’IHP Probab. Stat. 36, 1–34 (2000)MathSciNetzbMATHGoogle Scholar
- 3.Durrett, R.: Probability: Theory and Examples, 4th edn, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2010)Google Scholar
- 4.Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, vol. 38. Springer, Berlin (2009)zbMATHGoogle Scholar
- 5.Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I. Wiley, New York (1957)zbMATHGoogle Scholar
- 6.Feller, W.: An Introduction to Probability and Its Applications, vol. II. Wiley, New York (1971)zbMATHGoogle Scholar
- 7.Ferrari, P.A., Gabrielli, D.: BBS invariant measures with independent soliton components. arXiv:1812.02437 (2018)
- 8.Fulmek, M., Kleber, M.: Bijective proofs for Schur function identities which imply Dodgson’s condensation formula and Plücker relations. Electron J Comb 8(1), 16 (2001)zbMATHGoogle Scholar
- 9.Ferrari, P.A., Nguyen, C., Rolla, L., Wang, M.: Soliton decomposition of the box-ball system. arXiv:1806.02798 (2018)
- 10.Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
- 11.Fukuda, K., Okado, M., Yamada, Y.: Energy functions in box ball systems. Int. J. Mod. Phys. A 15(09), 1379–1392 (2000)ADSMathSciNetCrossRefGoogle Scholar
- 12.Hatayama, G., Hikami, K., Inoue, R., Kuniba, A., Takagi, T., Tokihiro, T.: The \(A_{M}^{(1)}\) automata related to crystals of symmetric tensors. J. Math. Phys. 42(1), 274–308 (2001)ADSMathSciNetCrossRefGoogle Scholar
- 13.Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Yamada, Y.: Remarks on Fermionic formula, recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998). Contemp. Math. 248, 243–291 (1998)CrossRefGoogle Scholar
- 14.Hatayama, G., Kuniba, A., Takagi, T.: Factorization of combinatorial R matrices and associated cellular automata. J. Stat. Phys. 102(3–4), 843–863 (2001)ADSMathSciNetCrossRefGoogle Scholar
- 15.Hormander, L.: An Introduction to Complex Analysis in Several Variables, vol. 7. Elsevier, Ansterdam (1973)zbMATHGoogle Scholar
- 16.Inoue, R., Kuniba, A., Takagi, T.: Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry. J. Phys. A 45(7), 073001 (2012)ADSMathSciNetCrossRefGoogle Scholar
- 17.Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991)MathSciNetCrossRefGoogle Scholar
- 18.Kerov, S., Kirillov, A., Reshetikhin, N.: Combinatorics, Bethe ansatz, and representations of the symmetric group. J. Math. Sci. 41(2), 916–924 (1988)MathSciNetCrossRefGoogle Scholar
- 19.Kuniba, A., Lyu, H., Okado, M.: Randomized box-ball systems, limit shape of rigged configurations and thermodynamic Bethe ansatz. Nucl. Phys. B 937, 240–271 (2018)ADSMathSciNetCrossRefGoogle Scholar
- 20.Kuniba, A., Nakanishi, T., Suzuki, J.: \(T\)-systems and \(Y\)-systems in integrable systems. J. Phys. A 44(10), 103001 (2011)ADSMathSciNetCrossRefGoogle Scholar
- 21.Kuniba, A., Okado, M., Sakamoto, R., Takagi, T., Yamada, Y.: Crystal interpretation of Kerov–Kirillov–Reshetikhin bijection. Nucl. Phys. B 740(3), 299–327 (2006)ADSMathSciNetCrossRefGoogle Scholar
- 22.Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions. Springer, New York (2002)CrossRefGoogle Scholar
- 23.Levine, L., Lyu, H., Pike, J.: Double jump phase transition in a random soliton cellular automaton. arXiv:1706.05621 (2017)
- 24.Lam, T., Pylyavskyy, P., Sakamoto, R.: Rigged configurations and cylindric loop schur functions. arXiv:1410.4455 (2014)
- 25.Lyu, H., Sivakoff, D.: Persistence of sums of correlated increments and clustering in cellular automata. Stoch. Process. Appl. 129, 1132–1152 (2018)MathSciNetCrossRefGoogle Scholar
- 26.Meyn, S., Tweedie, R.: Markov Chains and Stochastic Stability. Springer, Berlin (2012)zbMATHGoogle Scholar
- 27.Nakayashiki, A., Yamada, Y.: Kostka polynomials and energy functions in solvable lattice models. Sel. Math. 3(4), 547–599 (1997)MathSciNetCrossRefGoogle Scholar
- 28.Okado, M.: \(X=M\) conjecture, Combinatorial aspect of integrable systems. Math. Soc. Jpn. Mem. 17, 43–73 (2007)MathSciNetCrossRefGoogle Scholar
- 29.Sakamoto, R.: Kirillov–Schilling–Shimozono bijection as energy functions of crystals. Int. Math. Res. Not. 2009(4), 579–614 (2009)MathSciNetzbMATHGoogle Scholar
- 30.Shimozono, M.: Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties. J. Algebr. Comb. 15(2), 151–187 (2002)MathSciNetCrossRefGoogle Scholar
- 31.Takahashi, D.: On some soliton systems defined by using boxes and balls. In: 1993 International Symposium on Nonlinear Theory and Its Applications, (Hawaii; 1993), pp. 555–558 (1993)Google Scholar
- 32.Takahashi, D., Matsukidaira, J.: Box and ball system with a carrier and ultradiscrete modified KdV equation. J. Phys. A 30(21), L733 (1997)ADSMathSciNetCrossRefGoogle Scholar
- 33.Takahashi, D., Satsuma, J.: A soliton cellular automaton. J. Phys. Soc. Jpn. 59(10), 3514–3519 (1990)ADSMathSciNetCrossRefGoogle Scholar
- 34.Zeilberger, D.: Andre’s reflection proof generalized to the many-candidate Ballot problem. Discret. Math. 44(3), 325–326 (1983)MathSciNetCrossRefGoogle Scholar