Advertisement

Journal of Statistical Physics

, Volume 177, Issue 6, pp 1089–1130 | Cite as

Conformal Invariance and Vector Operators in the O(N) Model

  • Gonzalo De Polsi
  • Matthieu Tissier
  • Nicolás WscheborEmail author
Article
  • 41 Downloads

Abstract

It is widely expected that, for a large class of models, scale invariance implies conformal invariance. A sufficient condition for this to happen is that there exists no integrated vector operator, invariant under all internal symmetries of the model, with scaling dimension \(-1\). In this article, we compute the scaling dimensions of vector operators with lowest dimensions in the O(N) model. We use three different approximation schemes: \(\epsilon \) expansion, large N limit and third order of the derivative expansion of Non-Perturbative Renormalization Group equations. We find that the scaling dimensions of all considered integrated vector operators are always much larger than \(-1\). This strongly supports the existence of conformal invariance in this model. For the Ising model, an argument based on correlation functions inequalities was derived, which yields a lower bound for the scaling dimension of the vector perturbations. We generalize this proof to the case of the O(N) model with \(N\in \left\{ 2,3,4 \right\} \).

Keywords

Conformal symmetry Critical phenomena O(N) model 

Notes

Acknowledgements

The authors thank B. Delamotte, G. Tarjus, T. Morris and Y. Nakayama for fruitful discussions. The authors acknowledge financial support from the ECOS-Sud France-Uruguay Program U11E01. N. W. and D. P. thanks PEDECIBA (Programa de desarrollo de las Ciencias Básicas, Uruguay) and acknowledges funding through Grant from the Comisión Sectorial de Investigación Científica de la Universidad de la República, Project I+D 2016 (cod 412).

Supplementary material

References

  1. 1.
    Wilson, K.G., Kogut, J.B.: The Renormalization group and the epsilon expansion. Phys. Rep. 12, 75 (1974).  https://doi.org/10.1016/0370-1573(74)90023-4 ADSCrossRefGoogle Scholar
  2. 2.
    Wetterich, C.: Exact evolution equation for the effective potential. Phys. Lett. B 301, 90 (1993).  https://doi.org/10.1016/0370-2693(93)90726-X ADSCrossRefGoogle Scholar
  3. 3.
    Ellwanger, U.: Collective fields and flow equations. Z. Phys. C 58, 619 (1993).  https://doi.org/10.1007/BF01553022 ADSCrossRefGoogle Scholar
  4. 4.
    Morris, T.R.: The Exact renormalization group and approximate solutions. Int. J. Mod. Phys. A 9, 2411 (1994).  https://doi.org/10.1142/S0217751X94000972 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berges, J., Tetradis, N., Wetterich, C.: Nonperturbative renormalization flow in quantum field theory and statistical physics. Phys. Rep. 363, 223 (2002).  https://doi.org/10.1016/S0370-1573(01)00098-9 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Delamotte, B.: An Introduction to the nonperturbative renormalization group. Lect. Notes Phys. 852, 49 (2012).  https://doi.org/10.1007/978-3-642-27320-9_2 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zinn-Justin, J.: Quantum field theory and critical phenomena. Int. Ser. Monogr. Phys. 113, 1–1054 (2002)Google Scholar
  8. 8.
    Morris, T.R.: Derivative expansion of the exact renormalization group. Phys. Lett. B 329, 241 (1994).  https://doi.org/10.1016/0370-2693(94)90767-6 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Morris, T.R.: The Renormalization group and two-dimensional multicritical effective scalar field theory. Phys. Lett. B 345, 139 (1995).  https://doi.org/10.1016/0370-2693(94)01603-A ADSCrossRefGoogle Scholar
  10. 10.
    Nakayama, Y.: Scale invariance vs conformal invariance. Phys. Rep. 569, 1 (2015).  https://doi.org/10.1016/j.physrep.2014.12.003 ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Polyakov, A.M.: Nonhamiltonian approach to conformal quantum field theory. Zh. Eksp. Teor. Fiz. 39, 23 (1974)Google Scholar
  12. 12.
    Ferrara, S., Grillo, A., Gatto, R.: Tensor representations of conformal algebra and conformally covariant operator product expansion. Ann. Phys. 76(1), 161 (1973)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Rattazzi, R., Rychkov, V.S., Tonni, E., Vichi, A.: Bounding scalar operator dimensions in 4D CFT. J. High Energy Phys. 2008(12), 031 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    El-Showk, S., Paulos, M.F., Poland, D., Rychkov, S., Simmons-Duffin, D., Vichi, A.: Solving the 3D Ising model with the conformal bootstrap II. c-Minimization and precise critical exponents. J. Stat. Phys. 157, 869 (2014).  https://doi.org/10.1007/s10955-014-1042-7 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Simmons-Duffin, D.: A semidefinite program solver for the conformal bootstrap. J. High Energy Phys. 2015(6), 174 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333 (1984).  https://doi.org/10.1016/0550-3213(84)90052-X ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 605 (1984)MathSciNetCrossRefGoogle Scholar
  18. 18.
    El-Showk, S., Paulos, M.F., Poland, D., Rychkov, S., Simmons-Duffin, D., Vichi, A.: Solving the 3D Ising model with the conformal bootstrap. Phys. Rev. D 86, 025022 (2012).  https://doi.org/10.1103/PhysRevD.86.025022 ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Kos, F., Poland, D., Simmons-Duffin, D.: Bootstrapping mixed correlators in the 3D Ising model. JHEP 11, 109 (2014).  https://doi.org/10.1007/JHEP11(2014)109 ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    Kos, F., Poland, D., Simmons-Duffin, D.: Bootstrapping the \(O(N)\) vector models. JHEP 06, 091 (2014).  https://doi.org/10.1007/JHEP06(2014)091 ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Kos, F., Poland, D., Simmons-Duffin, D., Vichi, A.: Bootstrapping the O(N) Archipelago. JHEP 11, 106 (2015).  https://doi.org/10.1007/JHEP11(2015)106 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kos, F., Poland, D., Simmons-Duffin, D., Vichi, A.: Precision Islands in the Ising and \(O(N)\) models. JHEP 08, 036 (2016).  https://doi.org/10.1007/JHEP08(2016)036 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Polyakov, A.M.: Conformal symmetry of critical fluctuations. JETP Lett. 12, 381 (1970)ADSGoogle Scholar
  24. 24.
    Polyakov, A.M.: Conformal symmetry of critical fluctuations. Pisma Zh. Eksp. Teor. Fiz. 12, 538 (1970)Google Scholar
  25. 25.
    Migdal, A.A.: On hadronic interactions at small distances. Phys. Lett. 37B, 98 (1971).  https://doi.org/10.1016/0370-2693(71)90583-1 ADSCrossRefGoogle Scholar
  26. 26.
    Zamolodchikov, A.B.: Irreversibility of the flux of the renormalization group in a 2D field theory. JETP Lett. 43, 730 (1986)ADSMathSciNetGoogle Scholar
  27. 27.
    Zamolodchikov, A.B.: Irreversibility of the flux of the renormalization group in a 2D field theory. Pisma Zh. Eksp. Teor. Fiz. 43, 565 (1986)Google Scholar
  28. 28.
    Morinelli, V., Tanimoto, Y.: Commun. Math. Phys. (2019).  https://doi.org/10.1007/s00220-019-03410-x CrossRefGoogle Scholar
  29. 29.
    Polchinski, J.: Scale and conformal invariance in quantum field theory. Nucl. Phys. B 303(2), 226 (1988)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Delamotte, B., Tissier, M., Wschebor, N.: Scale invariance implies conformal invariance for the three-dimensional Ising model. Phys. Rev. E 93(1), 012144 (2016)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Luty, M.A., Polchinski, J., Rattazzi, R.: The \(a\)-theorem and the asymptotics of 4D quantum field theory. JHEP 01, 152 (2013).  https://doi.org/10.1007/JHEP01(2013)152 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Dymarsky, A., Komargodski, Z., Schwimmer, A., Theisen, S.: On scale and conformal invariance in four dimensions. JHEP 10, 171 (2015).  https://doi.org/10.1007/JHEP10(2015)171 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Dymarsky, A., Farnsworth, K., Komargodski, Z., Luty, M.A., Prilepina, V.: Scale invariance, conformality, and generalized free fields. JHEP 02, 099 (2016).  https://doi.org/10.1007/JHEP02(2016)099 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Dymarsky, A., Zhiboedov, A.: Scale-invariant breaking of conformal symmetry. J. Phys. A 48(41), 41FT01 (2015).  https://doi.org/10.1088/1751-8113/48/41/41FT01 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Griffiths, R.B.: Correlations in Ising ferromagnets. I. J. Math. Phys. 8(3), 478 (1967)ADSCrossRefGoogle Scholar
  36. 36.
    Kelly, D.G., Sherman, S.: General Griffiths’ inequalities on correlations in Ising ferromagnets. J. Math. Phys. 9(3), 466 (1968)ADSCrossRefGoogle Scholar
  37. 37.
    Lebowitz, J.L.: GHS and other inequalities. Commun. Math. Phys. 35(2), 87 (1974)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Meneses, S., Penedones, J., Rychkov, S., Viana Parente Lopes, J.M., Yvernay, P.: A structural test for the conformal invariance of the critical 3D Ising model. JHEP 04, 115 (2019).  https://doi.org/10.1007/JHEP04(2019)115 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Delamotte, B., Tissier, M., Wschebor, N.: (2018). e-Print: arXiv:1802.07157 [hep-th]
  40. 40.
    Gies, H., Wetterich, C.: Renormalization flow of bound states. Phys. Rev. D 65, 065001 (2002).  https://doi.org/10.1103/PhysRevD.65.065001 ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Bricmont, J.: The Gaussian inequality for multicomponent rotators. J. Stat. Phys. 17(5), 289 (1977)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Dunlop, F.: Zeros of the partition function and Gaussian inequalities for the plane rotator model. J. Stat. Phys. 21(5), 561 (1979)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Dunlop, F.: Correlation inequalities for multicomponent rotators. Commun. Math. Phys. 49(3), 247 (1976)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Monroe, J.L., Pearce, P.A.: Correlation inequalities for vector spin models. J. Stat. Phys. 21(6), 615 (1979)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Kunz, H., Pfister, C.E., Vuillermot, P.A.: Correlation inequalities for some classical spin vector models. Phys. Lett. A 54(6), 428 (1975)ADSCrossRefGoogle Scholar
  46. 46.
    Sokal, A.D.: Mean-field bounds and correlation inequalities. J. Stat. Phys. 28(3), 431 (1982)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    de Gennes, P.G.: Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett. A 38, 339 (1972).  https://doi.org/10.1016/0375-9601(72)90149-1 ADSCrossRefGoogle Scholar
  48. 48.
    Polchinski, J.: Renormalization and effective Lagrangians. Nucl. Phys. B231, 269 (1984).  https://doi.org/10.1016/0550-3213(84)90287-6 ADSCrossRefGoogle Scholar
  49. 49.
    Canet, L., Delamotte, B., Wschebor, N.: Fully developed isotropic turbulence: nonperturbative renormalization group formalism and fixed point solution. Phys. Rev. E 93(6), 063101 (2016).  https://doi.org/10.1103/PhysRevE.93.063101 ADSCrossRefGoogle Scholar
  50. 50.
    Frisch, U.: Turbulence: the legacy of AN Kolmogorov. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  51. 51.
    Morris, T.R., Percacci, R.: Trace anomaly and infrared cutoffs. Phys. Rev. D 99(10), 105007 (2019).  https://doi.org/10.1103/PhysRevD.99.105007 ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Rosten, O.J.: On functional representations of the conformal algebra. Eur. Phys. J. C 77(7), 477 (2017).  https://doi.org/10.1140/epjc/s10052-017-5049-5 ADSCrossRefGoogle Scholar
  53. 53.
    Rosten, O.J.: A conformal fixed-point equation for the effective average action. Int. J. Mod. Phys. A 34(05), 1950027 (2019).  https://doi.org/10.1142/S0217751X19500271 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Fisher, M.E., Ma, S.K., Nickel, B.G.: Critical exponents for long-range interactions. Phys. Rev. Lett. 29, 917 (1972)ADSCrossRefGoogle Scholar
  55. 55.
    Moshe, M., Zinn-Justin, J.: Quantum field theory in the large N limit: a review. Phys. Rep. 385, 69 (2003).  https://doi.org/10.1016/S0370-1573(03)00263-1 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Yabunaka, S., Delamotte, B.: Why might the standard large \(N\) analysis fail in the O(\(N\)) model: the role of cusps in the fixed point potentials. Phys. Rev. Lett. 121(23), 231601 (2018).  https://doi.org/10.1103/PhysRevLett.121.231601 ADSCrossRefGoogle Scholar
  57. 57.
    Canet, L., Delamotte, B., Mouhanna, D., Vidal, J.: Nonperturbative renormalization group approach to the Ising model: a derivative expansion at order partial**4. Phys. Rev. B 68, 064421 (2003).  https://doi.org/10.1103/PhysRevB.68.064421 ADSCrossRefGoogle Scholar
  58. 58.
    Canet, L., Delamotte, B., Mouhanna, D., Vidal, J.: Optimization of the derivative expansion in the nonperturbative renormalization group. Phys. Rev. D 67, 065004 (2003).  https://doi.org/10.1103/PhysRevD.67.065004 ADSCrossRefGoogle Scholar
  59. 59.
    Balog, I., Chaté, H., Delamotte, B., Marohnić, M., Wschebor, N.: (2019) e-Print: arXiv:1907.01829 [cond-mat.stat-mech]
  60. 60.
    Blaizot, J.P., Mendez Galain, R., Wschebor, N.: A new method to solve the non perturbative renormalization group equations. Phys. Lett. B 632, 571 (2006).  https://doi.org/10.1016/j.physletb.2005.10.086 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Benitez, F., Blaizot, J.P., Chate, H., Delamotte, B., Mendez-Galain, R., Wschebor, N.: Non-perturbative renormalization group preserving full-momentum dependence: implementation and quantitative evaluation. Phys. Rev. E 85, 026707 (2012).  https://doi.org/10.1103/PhysRevE.85.026707 ADSCrossRefGoogle Scholar
  62. 62.
    Von Gersdorff, G., Wetterich, C.: Nonperturbative renormalization flow and essential scaling for the Kosterlitz–Thouless transition. Phys. Rev. B 64, 054513 (2001).  https://doi.org/10.1103/PhysRevB.64.054513 ADSCrossRefGoogle Scholar
  63. 63.
    Codello, A., Defenu, N., D’Odorico, G.: Critical exponents of O(N) models in fractional dimensions. Phys. Rev. D 91(10), 105003 (2015).  https://doi.org/10.1103/PhysRevD.91.105003 ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    El-Showk, S., Paulos, M., Poland, D., Rychkov, S., Simmons-Duffin, D., Vichi, A.: Conformal field theories in fractional dimensions. Phys. Rev. Lett. 112, 141601 (2014).  https://doi.org/10.1103/PhysRevLett.112.141601 ADSCrossRefzbMATHGoogle Scholar
  65. 65.
    Nakayama, Y.: (2019) e-Print: arXiv:1906.07914 [hep-th]
  66. 66.
    Sokal, A.D.: More inequalities for critical exponents. J. Stat. Phys. 25(1), 25 (1981)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    Pohlmeyer, K.: The Jost–Schroer theorem for zero-mass fields. Commun. Math. Phys. 12, 204 (1969).  https://doi.org/10.1007/BF01661574 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Fernandez, R., Frohlich, J., Sokal, A.D.: Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer, Berlin (1992)CrossRefGoogle Scholar
  69. 69.
    Griffiths, R.B.: Correlations in Ising ferromagnets. II. External magnetic fields. J. Math. Phys. 8(3), 484 (1967)ADSCrossRefGoogle Scholar
  70. 70.
    Griffiths, R.B.: Correlations in Ising ferromagnets. III. Commun. Math. Phys. 6(2), 121 (1967)ADSCrossRefGoogle Scholar
  71. 71.
    Krinsky, S., Emery, V.: Upper bound on correlation functions of Ising ferromagnet. Phys. Lett. A 50(3), 235 (1974)ADSCrossRefGoogle Scholar
  72. 72.
    Griffiths, R.B.: Rigorous results for Ising ferromagnets of arbitrary spin. J. Math. Phys. 10(9), 1559 (1969)ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    Griffiths, R.B., Hurst, C.A., Sherman, S.: Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys. 11(3), 790 (1970)ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    Nakayama, Y.: Private communicationGoogle Scholar
  75. 75.
    Paulos, M.F., Rychkov, S., van Rees, B.C., Zan, B.: Conformal invariance in the long-range Ising model. Nucl. Phys. B 902, 246 (2016).  https://doi.org/10.1016/j.nuclphysb.2015.10.018 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Stevenson, P.M.: Optimized perturbation theory. Phys. Rev. D 23, 2916 (1981).  https://doi.org/10.1103/PhysRevD.23.2916 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gonzalo De Polsi
    • 1
  • Matthieu Tissier
    • 2
  • Nicolás Wschebor
    • 3
    Email author
  1. 1.Instituto de Física, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  2. 2.CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMCSorbonne UniversitéParisFrance
  3. 3.Instituto de Física, Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations