Advertisement

Journal of Statistical Physics

, Volume 177, Issue 3, pp 415–437 | Cite as

Hohenberg–Kohn Theorems for Interactions, Spin and Temperature

  • Louis GarrigueEmail author
Article

Abstract

We prove Hohenberg–Kohn theorems for several models of quantum mechanics. First, we show that for possibly degenerate systems of several types of particles, the pair correlation functions of any ground state contain the information of the interactions and of the external potentials. Then, in the presence of the Zeeman interaction, a strong constraint on external fields is derived for systems having the same ground state densities and magnetizations. Also, we provide a counterexample in a setting involving non-local potentials. Next, we prove that the density and the entropy of a ground state contain the information of both the imposed external potential and temperature. Eventually, we conclude that at positive temperature, Hohenberg–Kohn theorems generically hold, in particular they hold in the classical case.

Keywords

Mathematical physics Quantum physics Statistical physics Density functional theory Hohenberg–Kohn theorems 

Notes

Acknowledgements

I warmly thank Mathieu Lewin, my PhD advisor, for having supervized me during this work. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement MDFT No 725528), and from the Allocation Moniteur Normalien.

References

  1. 1.
    Agmon, S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations. Princeton University Press, Princeton (1982)zbMATHGoogle Scholar
  2. 2.
    Ayers, P.W., Fuentealba, P.: Density-functional theory with additional basic variables: extended Legendre transform. Phys. Rev. A 80, 032510 (2009)CrossRefADSGoogle Scholar
  3. 3.
    Ayers, P.W., Levy, M.: Generalized density-functional theory: conquering the N-representability problem with exact functionals for the electron pair density and the second-order reduced density matrix. J. Chem. Sci. 117, 507–514 (2005)CrossRefGoogle Scholar
  4. 4.
    Ayers, P.W., Nagy, A.: Alternatives to the electron density for describing Coulomb systems. J. Chem. Phys. 126, 144108 (2007)CrossRefADSGoogle Scholar
  5. 5.
    Baldsiefen, T., Cangi, A., Gross, E.: Reduced-density-matrix-functional theory at finite temperature: theoretical foundations. Phys. Rev. A 92, 052514 (2015)CrossRefADSGoogle Scholar
  6. 6.
    Blöchl, P.E., Pruschke, T., Potthoff, M.: Density-matrix functionals from Green’s functions. Phys. Rev. B 88, 205139 (2013)CrossRefADSGoogle Scholar
  7. 7.
    Burke, K.: Perspective on density functional theory. J. Chem. Phys. 136, 150901 (2012)CrossRefADSGoogle Scholar
  8. 8.
    Burke, K., Smith, J.C., Grabowski, P.E., Pribram-Jones, A.: Exact conditions on the temperature dependence of density functionals. Phys. Rev. B 93, 195132 (2016)CrossRefADSGoogle Scholar
  9. 9.
    Capelle, K., Vignale, G.: Nonuniqueness of the potentials of spin-density-functional theory. Phys. Rev. Lett. 86, 5546 (2001)CrossRefADSGoogle Scholar
  10. 10.
    Capelle, K., Vignale, G.: Nonuniqueness and derivative discontinuities in density-functional theories for current-carrying and superconducting systems. Phys. Rev. B 65, 113106 (2002)CrossRefADSGoogle Scholar
  11. 11.
    Chen, H., Friesecke, G.: Pair densities in density functional theory. Multiscale Model. Sim. 13, 1259–1289 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Dharma-Wardana, M.: Current issues in finite-T density-functional theory and warm-correlated matter. Computation 4, 16 (2016)CrossRefGoogle Scholar
  13. 13.
    Donnelly, R.A., Parr, R.G.: Elementary properties of an energy functional of the first-order reduced density matrix. J. Chem. Phys. 69, 4431–4439 (1978)CrossRefADSGoogle Scholar
  14. 14.
    Eschrig, H., Pickett, W.E.: Density functional theory of magnetic systems revisited. Solid State Commun. 118, 123–127 (2001)CrossRefADSGoogle Scholar
  15. 15.
    Fournais, S., Hoffmann-Ostenhof, M., Østergaard Sørensen, T.: The electron density is smooth away from the nuclei. Commun. Math. Phys. 228, 401–415 (2002)CrossRefADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Sørensen, T.Ø.: Analyticity of the density of electronic wavefunctions. Ark. Mat. 42, 87–106 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Friesecke, G.: On the infinitude of non-zero eigenvalues of the single-electron density matrix for atoms and molecules. R. Soc. Lond. Proc. Ser. A 459, 47–52 (2003)CrossRefADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Furche, F.: Towards a practical pair density-functional theory for many-electron systems. Phys. Rev. A 70, 022514 (2004)CrossRefADSGoogle Scholar
  19. 19.
    Garrigue, L.: Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. Math. Phys. Anal. Geom 21, 27 (2018)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Garrigue, L.: Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonian (2019). arXiv:1901.03207
  21. 21.
    Giesbertz, K.J., Ruggenthaler, M.: One-body reduced density-matrix functional theory in finite basis sets at elevated temperatures. Phys. Rep (2019)Google Scholar
  22. 22.
    Gilbert, T.L.: Hohenberg-Kohn theorem for nonlocal external potentials. Phys. Rev. B 12, 2111–2120 (1975)CrossRefADSGoogle Scholar
  23. 23.
    Gonis, A., Schulthess, T., Van Ek, J., Turchi, P.: A general minimum principle for correlated densities in quantum many-particle systems. Phys. Rev. Lett. 77, 2981 (1996)CrossRefADSGoogle Scholar
  24. 24.
    Graziani, F., Desjarlais, M.P., Redmer, R., Trickey, S.B.: Frontiers and Challenges in Warm Dense Matter, vol. 96. Springer, New York (2014)CrossRefzbMATHGoogle Scholar
  25. 25.
    Gunnarsson, O., Lundqvist, B.I.: Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 13, 4274–4298 (1976)CrossRefADSGoogle Scholar
  26. 26.
    Henderson, R.: A uniqueness theorem for fluid pair correlation functions. Phys. Lett. A 49, 197–198 (1974)CrossRefADSGoogle Scholar
  27. 27.
    Higuchi, M., Higuchi, K.: Pair density-functional theory by means of the correlated wave function. Phys. Rev. A 75, 042510 (2007)CrossRefADSGoogle Scholar
  28. 28.
    Hislop, P.: Exponential decay of two-body eigenfunctions: a review. In: Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, CA, 1999), vol. 4, pp. 265–288 (2000)Google Scholar
  29. 29.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Jecko, T.: A new proof of the analyticity of the electronic density of molecules. Lett. Math. Phys. 93, 73–83 (2010)CrossRefADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Jones, R.O.: Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897 (2015)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(2), A1133–A1138 (1965)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Kohn, W., Savin, A., Ullrich, C.A.: Hohenberg-Kohn theory including spin magnetism and magnetic fields. Int. J. Quantum Chem. 101, 20–21 (2005)CrossRefGoogle Scholar
  34. 34.
    Laestadius, A., Benedicks, M.: Hohenberg-Kohn theorems in the presence of magnetic field. Int. J. Quantum Chem. 114, 782–795 (2014)CrossRefGoogle Scholar
  35. 35.
    Levy, M.: Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the \(v\)-representability problem. Proc. Natl. Acad. Sci. USA 76, 6062–6065 (1979)CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Levy, M., Ziesche, P.: The pair density functional of the kinetic energy and its simple scaling property. J. Chem. Phys. 115, 9110–9112 (2001)CrossRefADSGoogle Scholar
  37. 37.
    Lewin, M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Lieb, E.H.: Simplified approach to the ground-state energy of an imperfect Bose gas. Phys. Rev. 130, 2518–2528 (1963)CrossRefADSGoogle Scholar
  39. 39.
    Lieb, E.H.: Density functionals for Coulomb systems. Int. J. Quantum Chem. 24, 243–277 (1983)CrossRefGoogle Scholar
  40. 40.
    Marques, M.A., Lathiotakis, N.: Empirical functionals for reduced-density-matrix-functional theory. Phys. Rev. A 77, 032509 (2008)CrossRefADSGoogle Scholar
  41. 41.
    Mazziotti, D.A.: Variational minimization of atomic and molecular ground-state energies via the two-particle reduced density matrix. Phys. Rev. A 65, 062511 (2002)CrossRefADSGoogle Scholar
  42. 42.
    Mazziotti, D.A.: Variational two-electron reduced density matrix theory for many-electron atoms and molecules: implementation of the spin- and symmetry-adapted \(T_{2}\) condition through first-order semidefinite programming. Phys. Rev. A 72, 032510 (2005)CrossRefADSGoogle Scholar
  43. 43.
    Mazziotti, D.A.: Variational reduced-density-matrix method using three-particle N-representability conditions with application to many-electron molecules. Phys. Rev. A 74, 032501 (2006)CrossRefADSGoogle Scholar
  44. 44.
    Mazziotti, D.A.: Two-electron reduced density matrices from the anti-Hermitian contracted Schrödinger equation: enhanced energies and properties with larger basis sets. J. Chem. Phys. 126, 184101 (2007)CrossRefADSGoogle Scholar
  45. 45.
    Mazziotti, D.A.: Pure-N-representability conditions of two-fermion reduced density matrices. Phys. Rev. A 94, 032516 (2016)CrossRefADSGoogle Scholar
  46. 46.
    Mermin, N.D.: Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441 (1965)CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    Meron, E., Katriel, J.: A Hohenberg-Kohn theorem for non-local potentials. Phys. Lett. A 61, 19–21 (1977)CrossRefADSMathSciNetGoogle Scholar
  48. 48.
    Mezey, P.G.: The holographic electron density theorem and quantum similarity measures. Mol. Phys. 96, 169–178 (1999)CrossRefADSGoogle Scholar
  49. 49.
    Nagy, A.: Density-matrix functional theory. Phys. Rev. A 66, 022505 (2002)CrossRefADSGoogle Scholar
  50. 50.
    Nagy, A.: Pair density functional theory. In: Gidopoulos, N.I., Wilson, S. (eds.) The Fundamentals of Electron Density, Density Matrix and Density Functional Theory in Atoms, Molecules and the Solid State, pp. 79–87. Springer, New York (2003)CrossRefGoogle Scholar
  51. 51.
    Nagy, A., Amovilli, C.: Effective potential in density matrix functional theory. J. Chem. Phys. 121, 6640–6648 (2004)CrossRefADSGoogle Scholar
  52. 52.
    Pan, X.-Y., Sahni, V.: Generalization of the Hohenberg-Kohn theorem to the presence of a magnetostatic field. J. Phys. Chem. Solids 73, 630–634 (2012)CrossRefADSGoogle Scholar
  53. 53.
    Pan, X.-Y., Sahni, V.: Hohenberg-Kohn theorems in electrostatic and uniform magnetostatic fields. J. Chem. Phys. 143, 174105 (2015)CrossRefADSGoogle Scholar
  54. 54.
    Pant, M., Rajagopal, A.: Theory of inhomogeneous magnetic electron gas. Solid State Commun. 10, 1157–1160 (1972)CrossRefADSGoogle Scholar
  55. 55.
    Pino, R., Bokanowski, O., Ludeña, E.V., Boada, R.L.: A re-statement of the Hohenberg-Kohn theorem and its extension to finite subspaces. Theor. Chem. Acc. 118, 557–561 (2007)CrossRefGoogle Scholar
  56. 56.
    Pittalis, S., Proetto, C., Floris, A., Sanna, A., Bersier, C., Burke, K., Gross, E.K.: Exact conditions in finite-temperature density-functional theory. Phys. Rev. Lett. 107, 163001 (2011)CrossRefADSGoogle Scholar
  57. 57.
    Pribram-Jones, A., Pittalis, S., Gross, E., Burke, K.: Thermal density functional theory in context. In: Redmer, R., Desjarlais, M.P., Trickey, S.B., Graziani, F. (eds.) Frontiers and Challenges in Warm Dense Matter, pp. 25–60. Springer, New York (2014)CrossRefGoogle Scholar
  58. 58.
    Rajagopal, A.: Theory of inhomogeneous electron systems: spin-density-functional formalism. Adv. Chem. Phys. 59–193 (1980)Google Scholar
  59. 59.
    Rajagopal, A., Callaway, J.: Inhomogeneous electron gas. Phys. Rev. B 7, 1912 (1973)CrossRefADSGoogle Scholar
  60. 60.
    Reimann, S., Borgoo, A., Tellgren, E.I., Teale, A.M., Helgaker, T.: Magnetic-field density-functional theory (BDFT): lessons from the adiabatic connection. J. Chem. Theory Comput. 13, 4089–4100 (2017)CrossRefGoogle Scholar
  61. 61.
    Ruelle, D.: Statistical Mechanics. Rigorous Results. World Scientific, Singapore (1999)CrossRefzbMATHGoogle Scholar
  62. 62.
    Ruggenthaler, M.: Ground-state quantum-electrodynamical density-functional theory (2015). arXiv:1509.01417
  63. 63.
    Ruiz-Serrano, Á., Skylaris, C.-K.: A variational method for density functional theory calculations on metallic systems with thousands of atoms. J. Chem. Phys. 139, 054107 (2013)CrossRefADSGoogle Scholar
  64. 64.
    Schade, R., Kamil, E., Blöchl, P.: Reduced density-matrix functionals from many-particle theory. Eur. Phys. J. 226, 2677–2692 (2017)Google Scholar
  65. 65.
    Sharma, S., Dewhurst, J.K., Lathiotakis, N.N., Gross, E.K.U.: Reduced density matrix functional for many-electron systems. Phys. Rev. B 78, 201103 (2008)CrossRefADSGoogle Scholar
  66. 66.
    Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7, 447–526 (1982)CrossRefzbMATHGoogle Scholar
  67. 67.
    Smith, J.C., Sagredo, F., Burke, K.: Warming up density functional theory. In: Wojcik, M.J., Nakatsuji, H., Kirtman, B., Ozaki, Y. (eds.) Frontiers of Quantum Chemistry, pp. 249–271. Springer, New York (2018)CrossRefGoogle Scholar
  68. 68.
    Tellgren, E.I.: Density-functional theory for internal magnetic fields. Phys. Rev. A 97, 012504 (2018)CrossRefADSGoogle Scholar
  69. 69.
    Valone, S.M.: A one-to-one mapping between one-particle densities and some N-particle ensembles. J. Chem. Phys. 73, 4653–4655 (1980)CrossRefADSMathSciNetGoogle Scholar
  70. 70.
    Vignale, G., Rasolt, M.: Density-functional theory in strong magnetic fields. Phys. Rev. Lett. 59, 2360 (1987)CrossRefADSGoogle Scholar
  71. 71.
    von Barth, U., Hedin, L.: local exchange-correlation potential for the spin polarized case. I. J. Phys. C 5, 1629–1642 (1972)CrossRefADSGoogle Scholar
  72. 72.
    Yang, W., Zhang, Y., Ayers, P.W.: Degenerate ground states and a fractional number of electrons in density and reduced density matrix functional theory. Phys. Rev. Lett. 84, 5172–5175 (2000)CrossRefADSGoogle Scholar
  73. 73.
    Ziesche, P.: Pair density functional theory—a generalized density functional theory. Phys. Lett. A 195, 213–220 (1994)CrossRefADSGoogle Scholar
  74. 74.
    Ziesche, P.: Attempts toward a pair density functional theory. Int. J. Quantum Chem. 60, 1361–1374 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CEREMADEUniversité Paris-Dauphine, PSL Research UniversityParisFrance

Personalised recommendations