Advertisement

How Disorder Originates and Grows Inside Order

  • S. E. Kurushina
  • E. A. ShapovalovaEmail author
Article
  • 15 Downloads

Abstract

We present a study of disorder origination and growth inside an ordered phase processes induced by the presence of multiplicative noise within mean-field approximation. Our research is based on the study of solutions of the nonlinear self-consistent Fokker-Planck equation for a stochastic spatially extended model of a chemical reaction. We carried out numerical simulation of the probability distribution density dynamics and statistical characteristics of the system under study for varying noise intensity values and system parameter values corresponding to a spatially inhomogeneous ordered state in a deterministic case. Physical interpretation of the results obtained that determines the scenario of noise-induced order–disorder transition is given. Mean-field results are compared with numerical simulations of the evolution of the model under study. We find that beginning from some value of external noise intensity the “embryo” of disorder appears inside the ordered phase. Its lifetime is finite, and it increases with growth of noise intensity. At some second noise intensity value the ordered and disordered phases begin to alternate repeatedly and almost periodically. The frequency of intermittency grows with the increasing of noise intensity. Ordered and disordered phase intermittency affects the process of spatial pattern formation as a consequent change of spatial inhomogeneity configurations.

Keywords

Disorder Mean field approximation Scenario of noise-induced order–disorder transition Intermittency of ordered and disordered phase Multiplicative noise Stochastic reaction–diffusion system Spatial pattern formation 

Notes

References

  1. 1.
    Lindnera, B., García-Ojalvo, J., Neimand, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Carrillo, O., Ibañes, M., García-Ojalvo, J., Casademunt, J., Sancho, J.M.: Intrinsic noise-induced phase transitions: beyond the noise interpretation. Phys. Rev. E 67, 046110 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Zaikin, A.A., García-Ojalvo, J., Schimansky-Geier, L.: Nonequilibrium first-order phase transition induced by additive noise. Phys. Rev. E 60, R6275 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Landa, P.S., Zaikin, A.A., Schimansky-Geier, L.: Influence of additive noise on noise-induced phase transitions in nonlinear chains. Chaos Solitons Fractals 9, 1367–1372 (1998)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Carrillo, O., Ibañes, M., Sancho, J.M.: Nose-induced phase transitions by nonilinear instability mechanism. Fluct. Noise Lett. 2, L1–L11 (2002)CrossRefGoogle Scholar
  6. 6.
    Buceta, J., Parrondo, J.M.R., de la Rubia, F.J.: Random Ginzburg-Landau model revisited: reentrant phase transitions. Phys. Rev. E 63, 031103 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Ibañes, M., García-Ojalvo, J., Toral, R., Sancho, J.M.: Noise-induced phase separation: mean-field results. Phys. Rev. E 60, 3597–3605 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Kurushina, S.E., Maximov, V.V., Romanovskii, Yu.M.: Weiss mean-field approzimation for multi-component stochastic spatially extended systems. Phys. Rev. E 90, 022135 (2014)Google Scholar
  9. 9.
    Deviren, B., Keskin, M.: Dynamic phase transitions and compensation temperatures in a mixed spin-3/2 and spin-5/2 Ising system. J. Stat. Phys. 140, 934–947 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Riego, P., Berger, A.: Nonuniversal surface behavior of dynamic phase transitions. Phys. Rev. E 91, 062141 (2015)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Velasqueo, L.A., Stariolo, D.A., Billoni, O.V.: Inverse transition in the dipolar frustrated Ising ferromagnet: the role of domain walls. Phys. Rev. B 90, 214408 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Williams-García, R.V., Moore, M., Beggs, J.M., Ortiz, G.: Quasicritical brain dynamics on a nonequilibrium Widom line. Phys. Rev. E 90, 062714 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Zhu, G., Fu, X., Tang, Q., Li, K.: Mean-field modeling approach for understanding epidemic dynamics in interconnected networks. Chaos Solitons Fractals 80, 117–124 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wu, Q., Chen, Sh.: Mean field theory of epidemic spreading with effective contacts on networks. Chaos Solitons Fractals 81, 359–364 (2015)Google Scholar
  15. 15.
    Takahashi, Ch., Yasuda, M.: Mean-field inference in gaussian restricted boltzmann machine. J. Phys. Soc. Jpn. 85, 034001 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Chavanis, P.-H.: The Brownian mean field model. Eur. Phys. J. B 87, 120 (2014)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Cēbers, A.: Poiseuille flow of a Quincke suspension. Phys. Rev. E 90, 032305 (2014)Google Scholar
  18. 18.
    Kudrnovský, J., Drchal, V., Bergqvist, L., Rusz, J., Turek, I., Újfalussy, B., Vincze, I.: Unified approach to electronic, thermodynamical, and transport properties of \(Fe_{3}Si\) and \(Fe_{3}Al\) alloys. Phys. Rev. B 90, 134408 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Bricmont, J., Van Den Bosch, H.: Intermediate model between majority voter PCA and its mean field model. J. Stat. Phys. 158, 1090–1099 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ayik, S.: A stochastic mean-field approach for nuclear dynamics. Phys. Lett. B 658, 174–179 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Horváth, B., Lazarovits, B., Sauret, O., Zaránd, G.: Failure of mean-field approach in out-of-equilibrium Anderson model. Phys. Rev. B 77, 113108 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Graefe, E.M., Korsch, H.J., Niederle, A.E.: Mean-field dynamics of a non-hermitian Bose-Hubbard dimer dimer. Phys. Rev. Lett. 101, 150408 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Akerlund, O., de Forcrand, Ph., Georges, A., Werner, Ph.: Dynamical mean field approximation applied to quantum field theory. Phys. Rev. D 88, 125006 (2013)Google Scholar
  24. 24.
    Sowiński, T., Chhajlanyr, R.W.: Mean-field approaches to the Bose-Hubbard model with three-body local interaction. Phys. Scr. 160, 014038 (2014)CrossRefGoogle Scholar
  25. 25.
    Bighin, G., Salasnich, L.: Gaussian fluctuations in the two-dimensional BCS-BEC crossover: finite temperature properties. J. Phys.: Conf. Ser., 691, 012018 (2016)Google Scholar
  26. 26.
    Hayami, S., Motome, Yu.: Topological semimetal-to-insulator phase transition between noncollinear and noncoplanar multiple-Q states on a square-to-triangular lattice. Phys. Rev. B 91, 075104 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Hinschberger, Y., Dixit, A., Manfredi, G., Hervieuxe, P.-A.: Equivalence between the semirelativistic limit of the Dirac-Maxwell equations and the Breit-Pauli model in the mean-field approximation. Phys. Rev. A 91, 012101 (2015)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    de Leeuw, A.-W., Onishchenko, O., Duine, R.A., Stoof, H.T.C.: Effects of dissipation on the superfluid-Mott-insulator transition of photons. Phys. Rev. A 91, 033609 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Nasu, J., Ishihara, S.: Resonating valence-bond state in an orbitally degenerate quantum magnet with dynamical Jahn-Teller effect. Phys. Rev. B 91, 045117 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Rosati, R., Iotti, R.C., Dolcini, F., Rossi, F.: Derivation of nonlinear single-particle equations via many-body Lindblad superoperators: a density-matrix approach. Phys. Rev. B 90, 125140 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Serreau, J., Volpe, C.: Neutrino-antineutrino correlations in dense anisotropic media. Phys. Rev. D 90, 125040 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Vermersch, B., Garreau, J.C.: Emergence of nonlinear behavior in the dynamics of ultracold bosons. Phys. Rev. A 91, 043603 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Yilmaz, B., Lacroix, D., Curebal, R.: Importance of realistic phase-space representations of initial quantum fluctuations using the stochastic mean-field approach for fermions. Phys. Rev. C 90, 054617 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Yilmaz, O., Ayik, S., Acar, F., Gokalpl, A.: Growth of spinodal instabilities in nuclear matter. Phys. Rev. C 91, 014605 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Jäger, G., Reich, D.M., Goerz, M.H., Koch, Ch.P., Hohenester, U.: Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: comparison of gradient-ascent-pulse-engineering and Krotov optimization schemes. Phys. Rev. A 90, 033628 (2014)Google Scholar
  36. 36.
    Trimborn, F., Witthaut, D., Wimberger, S.: Mean-field dynamics of a two-mode Bose-Einstein condensate subject to noise and dissipation. J. Phys. B 41, 171001 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Roussou, A., Tsibidis, G.D., Smyrnakis, J., Magiropoulos, M., Efremidis, N.K., Jackson, A.D., Kavoulakis, G.M.: Hysteresis and metastability of Bose-Einstein-condensed clouds of atoms confined in ring potentials. Phys. Rev. A 91, 023613 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Morita, K., Skokov, V., Friman, B., Redlich, K.: Role of mesonic fluctuations in the Polyakov loop extended quark-meson model at imaginary chemical potentiall. Phys. Rev. D 84, 074020 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Skokov, V.: Phase diagram in an external magnetic field beyond a mean-field approximation. Phys. Rev. D 85, 034026 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Araújo, M.S., Vannucchi, F.S., Timpanaro, A.M., Prado, C.P.C.: Mean-field approximation for the Sznajd model in complex networks. Phys. Rev. E 91, 022813 (2015)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    de Aguiar, M.A.M., Rauch, E.M., Stacey, B.C., Bar-Yam, Y.: Mean-field approximation to a spatial host-pathogen model. Phys. Rev. E 88, 039901 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    Barato, A.C., de Oliveira, M.J.: Mean-field approximations for the restricted solid-on-solid growth models. J. Phys. A 40, 8205 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Campanelli, L.: Evolution of primordial magnetic fields in mean-field approximation. Eur. Phys. J. C 74, 2690 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    Vrettas, M.D., Opper, M., Cornford, D.: Variational mean-field algorithm for efficient inference in large systems of stochastic differential equations. Phys. Rev. E 91, 012148 (2015)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Franović, I., Todorović, K., Vasović, N., Burić, N.: Persistence and failure of mean-field approximations adapted to a class of systems of delay-coupled excitable units. Phys. Rev. E 89, 022926 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Kolmakov, G.V., Pomirchi, L.M., Kezerashvili, R.Ya.: Toward room-temperature superfluidity of exciton polaritons in an optical microcavity with an embedded MoS\(_{2}\) monolayer. J. Opt. Soc. Am. B 33, C72–C79 (2016)CrossRefGoogle Scholar
  47. 47.
    Stratonovich, R.L.: Topics in the Theory of Random Noise, vol. 1. 292. Gordon and Breach, New York (1963)Google Scholar
  48. 48.
    Stratonovich, R.L.: Topics in the Theory of Random Noise, vol. 2. 329. Gordon and Breach, London (1967)zbMATHGoogle Scholar
  49. 49.
    Prigogine, I., Lefever, R.: Symmetry breaking instabilities in dissipative systems II. J. Chem. Phys. 48, 1695 (1968)ADSCrossRefGoogle Scholar
  50. 50.
    Kurushina, S.E., Maximov, V.V., Romanovskii, YuM: Spatial pattern formation in external noise: theory and simulation. Phys. Rev. E 86, 011124–011140 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics DepartmentSamara National Research University named after S.P. KorolyovSamaraRussian Federation

Personalised recommendations