Advertisement

Delay-Coordinate Maps and the Spectra of Koopman Operators

  • Suddhasattwa DasEmail author
  • Dimitrios Giannakis
Article
  • 27 Downloads

Abstract

The Koopman operator induced by a dynamical system is inherently linear and provides an alternate method of studying many properties of the system, including attractor reconstruction and forecasting. Koopman eigenfunctions represent the non-mixing component of the dynamics. They factor the dynamics, which can be chaotic, into quasiperiodic rotations on tori. Here, we describe a method through which these eigenfunctions can be obtained from a kernel integral operator, which also annihilates the continuous spectrum. We show that incorporating a large number of delay coordinates in constructing the kernel of that operator results, in the limit of infinitely many delays, in the creation of a map into the point spectrum subspace of the Koopman operator. This enables efficient approximation of Koopman eigenfunctions in systems with pure point or mixed spectra. We illustrate our results with applications to product dynamical systems with mixed spectra.

Keywords

Koopman operators Delay-coordinate maps Point spectrum Koopman eigenfunctions Kernel methods Galerkin approximation 

Mathematics Subject Classification

37A10 37E99 37G30 

Notes

Acknowledgements

Dimitrios Giannakis received support from ONR YIP Grant N00014-16-1-2649, NSF Grant DMS-1521775, and DARPA Grant HR0011-16-C-0116. Suddhasattwa Das is supported as a postdoctoral research fellow from the first grant. The authors are grateful to L S Young for her suggestions.

References

  1. 1.
    Anosov, D.V., Katok, A.B.: New examples in smooth ergodic theory: ergodic diffeomorphisms. Trans. Mosc. Math. Soc. 23, 1–35 (1970)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ahues, M., Largillier, A., Limaye, B.: Spectral computations for bounded operators. Chapman and Hall/CRC, Boca Raton (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Arbabi, H., Mezić, I.: Ergodic theory, dynamic mode decomposition and computation of spectral properties of the Koopman operator. SIAM J. Appl. Dyn. Sys. 16(4), 2096–2126 (2017).  https://doi.org/10.1137/17M1125236 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aubry, N., Guyonnet, R., Lima, R.: Spatiotemporal analysis of complex signals: theory and applications. J. Stat. Phys. 64, 683–739 (1991).  https://doi.org/10.1007/bf01048312 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Babuška, I., Osborn, J.: Eigenvalue Problems, Handbook of Numerical Analysis, vol. 2. North Holland, Amsterdam (1991)zbMATHGoogle Scholar
  6. 6.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003).  https://doi.org/10.1162/089976603321780317 CrossRefzbMATHGoogle Scholar
  7. 7.
    Belkin, M., Niyogi, P.: Convergence of Laplacian eigenmaps. In: Advances in Neural Information Processing Systems, pp. 129–136 (2007). http://papers.nips.cc/paper/2989-convergence-of-laplacian-eigenmaps.pdf
  8. 8.
    Berry, T., Harlim, J.: Variable bandwidth diffusion kernels. Appl. Comput. Harmon. Anal. (2015).  https://doi.org/10.1016/j.acha.2015.01.001 zbMATHGoogle Scholar
  9. 9.
    Berry, T., Sauer, T.: Consistent manifold representation for topological data analysis (2016). https://arxiv.org/pdf/1606.02353.pdf
  10. 10.
    Berry, T., Sauer, T.: Local kernels and the geometric structure of data. Appl. Comput. Harmon. Anal. 40, 439–469 (2016).  https://doi.org/10.1016/j.acha.2015.03.002 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Berry, T., Cressman, R., Gregurić-Ferenček, Z., Sauer, T.: Time-scale separation from diffusion-mapped delay coordinates. SIAM J. Appl. Dyn. Sys. 12, 618–649 (2013).  https://doi.org/10.1137/12088183x MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Berry, T., Giannakis, D., Harlim, J.: Nonparametric forecasting of low-dimensional dynamical systems. Phys. Rev. E 91, 032,915 (2015).  https://doi.org/10.1103/PhysRevE.91.032915 CrossRefGoogle Scholar
  13. 13.
    Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Phys. D 20(2–3), 217–236 (1986).  https://doi.org/10.1016/0167-2789(86)90031-x MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Brunton, S.L., Brunton, B.W., Proctor, J.L., Kaiser, E., Kutz, J.N.: Chaos as an intermittently forced linear system. Nat. Commun. 8(19) (2017).  https://doi.org/10.1038/s41467-017-00030-8
  15. 15.
    Budisić, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos 22, 047,510 (2012).  https://doi.org/10.1063/1.4772195 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Coifman, R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 (2006).  https://doi.org/10.1016/j.acha.2006.04.006 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Coifman, R., Shkolnisky, Y., Sigworth, F., Singer, A.: Graph Laplacian tomography from unknown random projections. IEEE Trans. Image Process. 17(10), 1891–1899 (2008).  https://doi.org/10.1109/tip.2008.2002305 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Constantin, P., Foias, C., Nicolaenko, B., Témam, R.: Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer, New York (1989).  https://doi.org/10.1007/978-1-4612-3506-4
  19. 19.
    Constantin, P., Kiselev, A., Ryzhik, L., Zlatoš, A.: Diffusion and mixing in fluid flow. Ann. Math. 168, 643–674 (2008). https://www.jstor.org/stable/40345422
  20. 20.
    Das, S., Giannakis, D.: Koopman spectra in reproducing kernel Hilbert spaces (2018). https://arxiv.org/pdf/1801.07799.pdf
  21. 21.
    Dellnitz, M., Froyland, G., Sertl, S.: On the isolated spectrum of the Perron-Frobenius operator. Nonlinearity 13(4), 1171–1188 (2000).  https://doi.org/10.1088/0951-7715/13/4/310 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dellnitz, M., Junge, O.: On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36, 491 (1999).  https://doi.org/10.1137/S0036142996313002 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Eisner, T., Farkas, B., Haase, M., Nagel, R.: Operator Theoretic Aspects of Ergodic Theory, Graduate Texts in Mathematics, vol. 272. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  24. 24.
    Fayad, B.: Analytic mixing reparametrizations of irrational flows. Ergod. Theory Dyn. Sys. 22, 437–468 (2002).  https://doi.org/10.1017/s0143385702000214 MathSciNetzbMATHGoogle Scholar
  25. 25.
    Ferreira, J.C., Menegatto, V.A.: Eigenvalues of integral operators defined by smooth positive definite kernels. Integral Equations Operator Theory 64(1), 61–81 (2009).  https://doi.org/10.1007/s00020-009-1680-3 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ferreira, J.C., Menegatto, V.A.: Eigenvalue decay rates for positive integral operators. Ann. Mat. Pura Appl. 192(6), 1–17 (2013).  https://doi.org/10.1007/s10231-012-0256-z MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Froyland, G., González-Tokman, C., Quas, A.: Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. J. Comput. Dyn. 1(2), 249–278 (2014).  https://doi.org/10.3934/jcd.2014.1.249 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Genton, M.C.: Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res. 2, 299–312 (2001)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Giannakis, D.: Dynamics-adapted cone kernels. SIAM J. Appl. Dyn. Sys. 14(2), 556–608 (2015).  https://doi.org/10.1137/140954544 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Giannakis, D.: Data-driven spectral decomposition and forecasting of ergodic dynamical systems. Appl. Comput. Harmon. Anal. (2017).  https://doi.org/10.1016/j.acha.2017.09.001
  31. 31.
    Giannakis, D., Das, S.: Extraction and prediction of coherent patterns in incompressible flows through space-time Koopman analysis (2017). https://arxiv.org/pdf/1706.06450.pdf
  32. 32.
    Giannakis, D., Majda, A.J.: Time series reconstruction via machine learning: Revealing decadal variability and intermittency in the North Pacific sector of a coupled climate model. In: Conference on Intelligent Data Understanding 2011. Mountain View, California (2011)Google Scholar
  33. 33.
    Giannakis, D., Majda, A.J.: Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability. Proc. Natl. Acad. Sci. 109(7), 2222–2227 (2012).  https://doi.org/10.1073/pnas.1118984109 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Giannakis, D., Slawinska, J., Zhao, Z.: Spatiotemporal feature extraction with data-driven Koopman operators. J. Mach. Learn. Res. Proc. 44, 103–115 (2015)Google Scholar
  35. 35.
    Halmos, P.: Lectures on Ergodic Theory, vol. 142. American Mathematical Society, Providence (1956)zbMATHGoogle Scholar
  36. 36.
    Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  37. 37.
    Koopman, B.O.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. 17(5), 315–318 (1931).  https://doi.org/10.1073/pnas.17.5.315 ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    Korda, M., Mezić, I.: On convergence of extended dynamic mode decomposition to the Koopman operator. J. Nonlinear Sci. 28(2), 687–710 (2018).  https://doi.org/10.1007/s00332-017-9423-0 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Korda, M., Putinar, M., Mezić, I.: Data-Driven Spectral Analysis of the Koopman Operator. Appl. Comput. Harmon. Anal. (2018).  https://doi.org/10.1016/j.acha.2018.08.002 zbMATHGoogle Scholar
  40. 40.
    Krengel, U.: Ergodic Theorems, vol. 6. Walter de Gruyter, Berlin (1985)CrossRefzbMATHGoogle Scholar
  41. 41.
    Law, K., Shukla, A., Stuart, A.M.: Analysis of the 3DVAR filter for the partially observed Lorenz’63 model. Discret. Contin. Dyn. Syst. 34(3), 1061–10,178 (2013).  https://doi.org/10.3934/dcds.2014.34.1061
  42. 42.
    Lian, Z., Liu, P., Lu, K.: SRB measures for a class of partially hyperbolic attractors in Hilbert spaces. J. Differ. Equ. 261, 1532–1603 (2016).  https://doi.org/10.1016/j.jde.2016.04.006 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).  https://doi.org/10.1175/1520-0469(1963)020%3c0130:DNF%3e2.0.CO;2 ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    Lu, K., Wang, Q., Young, L.S.: Strange attractors for periodically forced parabolic equations. Mem. Am. Math. Soc. 224(1054), 1–85 (2013).  https://doi.org/10.1090/S0065-9266-2012-00669-1 MathSciNetzbMATHGoogle Scholar
  45. 45.
    Luzzatto, S., Melbourne, I., Paccaut, F.: The Lorenz attractor is mixing. Commun. Math. Phys. 260(2), 393–401 (2005).  https://doi.org/10.1007/s00220-005-1411-9 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    McGuinness, M.J.: The fractal dimension of the Lorenz attractor. Philos. Trans. R. Soc. Lond. Ser. A 262, 413–458 (1968).  https://doi.org/10.1098/rsta.1968.0001 CrossRefGoogle Scholar
  47. 47.
    Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41, 309–325 (2005).  https://doi.org/10.1007/s11071-005-2824-x MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Mezić, I., Banaszuk, A.: Comparison of systems with complex behavior. Physica D 197, 101–133 (2004).  https://doi.org/10.1016/j.physd.2004.06.015 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Nadkarni, M.G.: The spectral theorem for unitary operators. Springer, Berlin (1998)Google Scholar
  50. 50.
    Packard, N.H., et al.: Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1980).  https://doi.org/10.1103/physrevlett.45.712 ADSCrossRefGoogle Scholar
  51. 51.
    Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009).  https://doi.org/10.1017/s0022112009992059 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Sauer, T., Yorke, J.A., Casdagli, M.: Embedology. J. Stat. Phys. 65(3–4), 579–616 (1991).  https://doi.org/10.1007/bf01053745 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010).  https://doi.org/10.1017/S0022112010001217 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Schmid, P.J., Sesterhenn, J.L.: Dynamic mode decomposition of numerical and experimental data. In: Bulletin of American Physical Society (BAPS), 61st APS Meeting, p. 208. San Antonio (2008)Google Scholar
  55. 55.
    Scholkopf, B., Smola, A., Mu, K.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1998).  https://doi.org/10.1162/089976698300017467 CrossRefGoogle Scholar
  56. 56.
    Slawinska, J., Giannakis, D.: Indo-Pacific variability on seasonal to multidecadal time scales. Part I: intrinsic SST modes in models and observations. J. Climate 30, 5265–5294 (2017).  https://doi.org/10.1175/JCLI-D-16-0176.1 ADSCrossRefGoogle Scholar
  57. 57.
    Stone, M.H.: On one-parameter unitary groups in Hilbert space. Ann. Math. 33, 643–648 (1932).  https://doi.org/10.2307/1968538 MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Trillos, N., Slepčev, D.: A variational approach to the consistency of spectral clustering. Appl. Comput. Harmon. Anal. 45(2), 239–281 (2018).  https://doi.org/10.1016/j.acha.2016.09.003 MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Tu, J.H., Rowley, C.W., Lucthenburg, C.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1(2), 391–421 (2014).  https://doi.org/10.3934/jcd.2014.1.391 MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Ser. I 328, 1197–1202 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Vautard, R., Ghil, M.: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35, 395–424 (1989).  https://doi.org/10.1016/0167-2789(89)90077-8 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    von Luxburg, U., Belkin, M., Bousquet, O.: Consistency of spectral clustering. Ann. Stat. 26(2), 555–586 (2008).  https://doi.org/10.1214/009053607000000640 MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Wang, C., Deser, C., Yu, J.Y., DiNezio, P., Clement, A.: El Niño and Southern Oscillation (ENSO): a review. In: P.W. Glynn, D.P. Manzello, I.C. Enoch (eds.) Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment, Coral Reefs of the World, vol. 8, pp. 85–106. Springer Netherlands, Dordrecht (2017).  https://doi.org/10.1007/978-94-017-7499-4_4
  64. 64.
    Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. (2015).  https://doi.org/10.1007/s00332-015-9258-5 MathSciNetzbMATHGoogle Scholar
  65. 65.
    Young, L.S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108, 733–754 (2002).  https://doi.org/10.1023/A:1019762724717 MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. Adv. Neural Inf. Process. Syst. 17, 1601–1608 (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations