Advertisement

Journal of Statistical Physics

, Volume 175, Issue 2, pp 456–494 | Cite as

Metastability of the Two-Dimensional Blume-Capel Model with Zero Chemical Potential and Small Magnetic Field on a Large Torus

  • C. Landim
  • P. Lemire
  • M. MourraguiEmail author
Article
  • 24 Downloads

Abstract

We consider the Blume-Capel model with zero chemical potential and small magnetic field in a two-dimensional torus whose length increases with the inverse of the temeprature. We prove the mestastable behavior and that starting from a configuration with only negative spins, the process visits the configuration with only 0-spins on its way to the ground state which is the configuration with all spins equal to \(+1\).

Notes

Acknowledgements

C. Landim has been partially supported by FAPERJ CNE E-26/201.207/2014 and by CNPq Bolsa de Produtividade em Pesquisa PQ 303538/2014-7. C. Landim and M. Mourragui have been partially supported by ANR-15-CE40-0020-01 LSD of the French National Research Agency.

References

  1. 1.
    Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140, 1065–1114 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains II. J. Stat. Phys. 149, 598–618 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bovier, A., den Hollander, F.: Metastability: A Potential-Theoretic Approach. Grundlehren der mathematischen Wissenschaften, vol. 351. Springer, Berlin (2015)Google Scholar
  4. 4.
    Cirillo, E.N.M., Nardi, F.R.: Relaxation height in energy landscapes : an application to multiple metastable states. J. Stat. Phys. 150, 1080–1114 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cirillo, E.N.M., Nardi, F.R., Spitoni, C.: Sum of exit times in a series of two metastable states. Eur. Phys. J. Spec. Top. 226, 2421–2438 (2017)CrossRefGoogle Scholar
  6. 6.
    Cirillo, E.N.M., Olivieri, E.: Metastability and nucleation for the Blume-Capel model. Different mechanisms of transition. J. Stat. Phys. 83, 473–554 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Landim, C., Lemire, P.: Metastability of the two-dimensional Blume-Capel model with zero chemical potential and small magnetic field. J. Stat. Phys. 164, 346–376 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Landim, C., Loulakis, M., Mourragui, M.: Metastable Markov chains: from the convergence of the trace to the convergence of the finite-dimensional distributions. Electron. J. Probab. 23. Paper no. 95 (2018)Google Scholar
  9. 9.
    Manzo, F., Olivieri, E.: Relaxation patterns for competing metastable states: a nucleation and growth model. Markov Proc. Relat. Fields 4, 549–570 (1998)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Manzo, F., Olivieri, E.: Dynamical Blume-Capel model: competing metastable states at infinite volume. J. Stat. Phys. 104, 1029–1090 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IMPARio de JaneiroBrazil
  2. 2.CNRS UMR 6085Université de RouenSaint-Étienne-du-RouvrayFrance

Personalised recommendations