Advertisement

Journal of Statistical Physics

, Volume 175, Issue 2, pp 418–455 | Cite as

Spectral Gaps for the Two-Species Product Vacua and Boundary States Models on the d-Dimensional Lattice

  • Michael BishopEmail author
Article
  • 18 Downloads

Abstract

We study the two-species Product Vacua and Boundary States (PVBS) models on the integer lattice \({\mathbb {Z}}^d\) and prove the existence and non-existence of a spectral gap for all choices of parameters. The PVBS models are spin-1 quantum spin systems which are translation-invariant, frustration-free, and composed of nearest-neighbor non-commuting interactions with both an exclusion property and an interchange interaction between particle species. These models serve as possible representatives of families of automorphically equivalent gapped quantum spin-1 systems on \({\mathbb {Z}}^d\). The main result is that the two-species PVBS Hamiltonians have a positive spectral gap when gapped on both of the single-species subspaces and are gapless if gapless on either single-species subspace. The addition of a new particle species does not create any new gapless phases.

Keywords

Quantum spin systems Spectral gap Frustration-free Multi-dimensional 

Notes

References

  1. 1.
    Affleck, I., Kennedy, T., Lieb, F.H., Tasaki, H.: Valence bond ground states in isotropic quantum antiferromagnets. Condensed Matter Physics and Exactly Soluble Models, pp. 253–304. Springer, New York (1988)CrossRefGoogle Scholar
  2. 2.
    Aharonov, D., Arad, I., Landau, Z., Vazirani, U.: The detectability lemma and quantum gap amplification. In: Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC’09, pp. 417–426, New York, NY, USA, 2009. ACM (2009)Google Scholar
  3. 3.
    Aharonov, D., Arad, I., Vazirani, U., Landau, Z.: The detectability lemma and its applications to quantum hamiltonian complexity. New J. Phys. 13(11), 113043 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Anshu, A., Arad, I., Vidick, T.: Simple proof of the detectability lemma and spectral gap amplification. Phys. Rev. B 93, 205142 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Arad, I., Kitaev, A., Landau, Z., Umesh, V.: An area law and sub-exponential algorithm for 1d systems. arXiv preprint arXiv:1301.1162 (2013)
  6. 6.
    Bachmann, S., Nachtergaele, B.: Product vacua with boundary states and the classification of gapped phases. Commun. Math. Phys. 329(2), 509–544 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bachmann, S., Michalakis, S., Nachtergaele, B., Sims, R.: Automorphic equivalence within gapped phases of quantum lattice systems. Commun. Math. Phys. 309(3), 835–871 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bachmann, S., Hamza, E., Nachtergaele, B., Young, A.: Product vacua and boundary state models in d-dimensions. J. Stat. Phys. 160(3), 636–658 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bishop, M., Nachtergaele, B., Young, A.: Spectral gap and edge excitations of d-dimensional pvbs models on half-spaces. J. Stat. Phys. 162(6), 1485–1521 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bravyi, S., Gosset, D.: Gapped and gapless phases of frustration-free spin 1/2 chains. J. Math. Phys. 56(6), 061902 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bravyi, S., Caha, L., Movassagh, R., Nagaj, D., Shor, P.W.: Criticality without frustration for quantum spin-1 chains. Phys. Rev. Lett. 109, 207202 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Chen, X., Gu, Z.C., Liu, Z.X., Wen, X.G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Chen, X., Gu, Z.C., Liu, Z.X., Wen, X.G.: Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B 87, 155114 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Cubitt, T.S., Perez-Garcia, D., Wolf, M.: Undecidability of the spectral gap. Nature 528(7581), 207–211 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144(3), 443–490 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv preprint arXiv:quant-ph.0001106 (2000)
  17. 17.
    Gosset, D., Huang, Y.: Correlation length versus gap in frustration-free systems. Phys. Rev. Lett. 116, 097202 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Gosset, D., Mozgunov, E.: Local gap threshold for frustration-free spin systems. J. Math. Phys. 57(9), 091901 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gottesman, D., Hastings, M.B.: Entanglement versus gap for one-dimensional spin systems. New J. Phys. 12(2), 025002 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hastings, M.B.: Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Hastings, M.B.: Quasi-adiabatic continuation in gapped spin and fermion systems: Goldstone’s theorem and flux periodicity. J. Stat. Mech. 2007(05), P05010 (2007)CrossRefGoogle Scholar
  22. 22.
    Hastings, M.B., Koma, T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265(3), 781–804 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Irani, S.: Ground state entanglement in one-dimensional translationally invariant quantum systems. J. Math. Phys. 51(2), 022101 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jansen, S., Ruskai, M.-B., Seiler, R.: Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 48(10), 102111 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kastoryano, M.J., Lucia, A.: Divide and conquer method for proving gaps of frustration free hamiltonians. arXiv preprint arXiv:1705.09491 (2017)
  26. 26.
    Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Knabe, S.: Energy gaps and elementary excitations for certain vbs-quantum antiferromagnets. J. Stat. Phys. 52(3–4), 627–638 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lemm, Marius, Mozgunov, Evgeny: Spectral gaps of frustration-free spin systems with boundary. arXiv preprint arXiv:1801.08915 (2018)
  29. 29.
    Movassagh, R., Shor, P.W.: Power law violation of the area law in quantum spin chains. arXiv preprint arXiv:1408.1657 (2014)
  30. 30.
    Movassagh, R.: Generic local hamiltonians are gapless. Phys. Rev. Lett. 119(22), 220504 (2017)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Nachtergaele, B.: The spectral gap for some spin chains with discrete symmetry breaking. Commun. Math. Phys. 175(3), 565–606 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Nachtergaele, B., Sims, R.: Lieb-robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265(1), 119–130 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Schuch, N., Pérez-García, D., Cirac, I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84, 165139 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Schwarz, M., Temme, K., Verstraete, F., Perez-Garcia, D., Cubitt, Toby S: Preparing topological projected entangled pair states on a quantum computer. Phys. Rev. A 88(3), 032321 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsCalifornia State UniversityFresnoUSA

Personalised recommendations