Journal of Statistical Physics

, Volume 175, Issue 2, pp 384–401 | Cite as

Proof of a Conjecture on the Infinite Dimension Limit of a Unifying Model for Random Matrix Theory

  • Mario PerniciEmail author
  • Giovanni M. Cicuta


We study the large N limit of a sparse random block matrix ensemble. It depends on two parameters: the average connectivity Z and the size of the blocks d, which is the dimension of an euclidean space. In the limit of large d with \(\frac{Z}{d}\) fixed, we prove the conjecture that the spectral distribution of the sparse random block matrix converges in the case of the Adjacency block matrix to the one of the effective medium approximation, in the case of the Laplacian block matrix to the Marchenko-Pastur distribution. We extend previous analytical computations of the moments of the spectral density of the Adjacency block matrix and the Lagrangian block matrix, valid for all values of Z and d.


Random matrix theory Random trees Block matrix Moments method 



One of us (G. M. C.) thanks Alessio Zaccone for introducing him to the sparse random block model analyzed in this paper and Giorgio Parisi for encouraging an automated evaluation of the moments.


  1. 1.
    Cicuta, G.M., Krausser, J., Milkus, R., Zaccone, A.: Unifying model for random matrix theory in arbitrary space dimension. Phys. Rev. E 97, 032113 (2018)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Parisi, G.: Soft modes in jammed hard spheres (I): Mean field theory of the isostatic transition, arxiv arXiv:1401.4413 (2014)
  3. 3.
    Benetti, F.P.C., Parisi, G., Pietracaprina, F., Sicuro, G.: Mean-field model for the density of states of jammed soft spheres. Phys. Rev. E 97, 062157 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Lemaitre, A., Maloney, C.: Sum rules for the quasi-static and visco-elastic response of disordered solids at zero temperature. J. Stat. Phys. 123, 415 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Zaccone, A., Scossa-Romano, E.: Approximate analytical description of the nonaffine response of amorphous solids. Phys. Rev. B 83, 184205 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Erdos, P., Renyi, A.: On the evolution of random graphs. Magyar Tud. Akad. Kut. Int. Kozl. 5, 17 (1960)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Akemann, G., Baik, J., Di Francesco, P. (eds.): The Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011)zbMATHGoogle Scholar
  8. 8.
    Semerjian, G., Cugliandolo, L.F.: Sparse random matrices: the eigenvalue spectrum revisited. J. Phys. A 35, 4837 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Marchenko, V.A., Pastur, L.A.: The distribution of eigenvalues in certain sets of random matrices. Mat. Sb. 72, 507 (1967)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Marchenko, V., Pastur, L.A.: The eigenvalue distribution in some ensembles of random matrices. Math. USSR Sbornik 1, 457–483 (1967)CrossRefGoogle Scholar
  11. 11.
    Bauer, M., Golinelli, O.: Random incidence matrices: moments of the spectral density. J. Stat. Phys. 103, 301–337 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kreweras, G.: Sur les partitions noncroisées d’un cycle. Discret. Math. 1, 333 (1972)CrossRefzbMATHGoogle Scholar
  13. 13.
    Simion, R.: Noncrossing partitions. Discret. Math. 217, 367 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Decelle, Aurelien, Krzakala, Florent, Moore, Cristopher, Zdeborova, Lenka: Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Phys. Rev. E 84, 066106 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, X., Nadakuditi, R.R., Newman, M.E.J.: Spectra of random graphs with community structure and arbitrary degrees. Phys. Rev. E 89, 042816 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Avrachenkov, K., Cottatellucci, L., Kadavankandy, A.: Spectral properties of random matrices for stochastic block model, RR-8703, INRIA Sophia Antipolis. France, INRIA (2015) \(<\)hal-01142944\(>\) Google Scholar
  17. 17.
    Ergun, G., Kühn, R.: Spectra of modular graphs. J. Phys. A 42, 395001 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kühn, R., van Mourik, Jort: Spectra of modular and small-world matrices. J. Phys. A 44, 165205 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Van Mieghem, P.: Graph spectra for complex networks. Cambridge University Press, Cmabridge (2011)zbMATHGoogle Scholar
  20. 20.
    Khorunzhy, A., Vangerovsky, V.: On Asymptotic Solvability of Random Graph’s Laplacians, arxiv:math-ph/0009028 (2000)
  21. 21.
    Khorunzhy, O., Shcherbina, M., Vengerovsky, V.: Eigenvalue distribution of large weighted random graphs. J. Math. Phys. 45, 1648 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Bryc, W., Dembo, A., Jiang, T.: Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34, 1–38 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ding, X., Jiang, T.: Spectral distributions of Adjacency and Laplacian matrices of random graphs. Ann. Appl. Probab. 20, 2086–2117 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Huang, J., Landon, B.: Spectral statistics of sparse Erdos-Renyi graph Laplacian , arxiv:1510.06390
  25. 25.
    Pastur, L.A.: On the spectrum of random matrices. Theor. Math. Phys. 10, 67–74 (1972)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pastur, L., Vasilchuk, V.: On the law of addition of random matrices. Commun. Math. Phys. 214, 249–296 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Brezin, E., Hikami, S., Zee, A.: Universal correlations for deterministic plus random Hamiltonians. Phys. Rev. E 51, 5442 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    Zee, A.: Law of addition in random matrix theory. Nucl. Phys. B474, 726 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Janik, R.A., Nowak, M.A., Papp, G., Zahed, I.: Various shades of blue’s functions. Acta Phys. Polon. B 28, 2997 (1997)Google Scholar
  30. 30.
    Klazar, M.: On \(abab\)-free and \(abba\)-free set partitions. Eur. J. Comb. 17, 53–68 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Peterson, T.K.: ‘Eulerian Numbers‘ Birkhauser Advanced Texts, Eq.(26)Google Scholar
  32. 32.
    A reader interested in the moments of higher order, not quoted here, is welcome to write to M. PerniciGoogle Scholar
  33. 33.
    Pastur, L., Shcherbina, M.: Eigenvalue Distribution of Large Random Matrices , Mathematical Surveys and Monographs, vol. 171. Amer. Math. Society, p. 285 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Istituto Nazionale di Fisica Nucleare, Sezione di MilanoMilanoItaly
  2. 2.Dip. Fisica, Università di ParmaParmaItaly

Personalised recommendations