Advertisement

Journal of Statistical Physics

, Volume 175, Issue 2, pp 289–350 | Cite as

The Spatially Homogeneous Boltzmann Equation for Bose–Einstein Particles: Rate of Strong Convergence to Equilibrium

  • Shuzhe Cai
  • Xuguang LuEmail author
Article
  • 58 Downloads

Abstract

The paper is a continuation of our previous work on the spatially homogeneous Boltzmann equation for Bose–Einstein particles with quantum collision kernel that includes the hard sphere model. Solutions \(F_t\) under consideration that conserve the mass, momentum, and energy and converge at least weakly to equilibrium \(F_{\mathrm{be}}\) as \(t\rightarrow \infty \) have been proven to exist at least for isotropic initial data that have positive entropy, and \(F_t\) have to be Borel measures for the case of low temperature. The new progress is as follows: we prove that the long time convergence of \(F_t(\{0\})\) to the Bose–Einstein condensation \(F_{\mathrm{be}}(\{0\})\) holds for all isotropic initial data \(F_0\) satisfying the low temperature condition. This immediately implies the long time strong convergence to equilibrium. We also obtain an algebraic rate of the strong convergence for arbitrary temperature. Our proofs are based on entropy control, positive lower bound of entropy, Villani’s inequality for entropy dissipation, a suitable time-dependent convex combination between the solution and a fixed positive function (in order to deal with logarithm terms), the convex-positivity of the cubic collision integral, and an iteration technique for obtaining a positive lower bound of condensation.

Keywords

Bose–Einstein particles Entropy Strong convergence Equilibrium Low temperature Condensation 

Notes

Acknowledgements

We are grateful to a referee for helpful suggestions on the presentation of the paper. This work was supported by National Natural Science Foundation of China Grant No.11771236.

References

  1. 1.
    Arkeryd, L.: On low temperature kinetic theory; spin diffusion, Bose Einstein condensates, anyons. J. Stat. Phys. 150, 1063–1079 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arkeryd, L., Nouri, A.: Bose condensates in interaction with excitations: a kinetic model. Commun. Math. Phys. 310, 765–788 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bandyopadhyay, J., Velázquez, J.J.L.: Blow-up rate estimates for the solutions of the bosonic Boltzmann–Nordheim equation. J. Math. Phys. 56, 063302, 27 (2015).  https://doi.org/10.1063/1.4921917 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benedetto, D., Pulvirenti, M., Castella, F., Esposito, R.: On the weak-coupling limit for bosons and fermions. Math. Models Methods Appl. Sci. 15, 1811–1843 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Briant, M., Einav, A.: On the Cauchy problem for the homogeneous Boltzmann–Nordheim equation for bosons: local existence, uniqueness and creation of moments. J. Stat. Phys. 163, 1108–1156 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carlen, E.A., Carvalho, M.C., Lu, X.: On strong convergence to equilibrium for the Boltzmann equation with soft potentials. J. Stat. Phys. 135, 681–736 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970)zbMATHGoogle Scholar
  8. 8.
    Demengel, F., Temam, R.: Convex functions of a measure and applications. Indiana Univ. Math. J. 33(5), 673–709 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Erdös, L., Salmhofer, M., Yau, H.-T.: On the quantum Boltzmann equation. J. Stat. Phys. 116, 367–380 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Escobedo, M., Mischler, S.: On a quantum Boltzmann equation for a gas of photons. J. Math. Pures Appl. (9) 80(5), 471–515 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Escobedo, M., Mischler, S., Valle, M.A.: Homogeneous Boltzmann equation in quantum relativistic kinetic theory. Electron. J. Diff. Equ. Monogr. 4, 1–85 (2003)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Escobedo, M., Mischler, S., Velázquez, J.J.L.: Singular solutions for the Uehling–Uhlenbeck equation. Proc. R. Soc. Edinburgh 138A, 67–107 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Escobedo, M., Velázquez, J.J.L.: On the blow up and condensation of supercritical solutions of the Nordheim equation for bosons. Commun. Math. Phys. 330, 331–365 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Escobedo, M., Velázquez, J.J.L.: Finite time blow-up and condensation for the bosonic Nordheim equation. Invent. Math. 200, 761–847 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Escobedo, M., Tran, M.-B.: Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinet. Relat. Models 8, 493–531 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Josserand, C., Pomeau, Y., Rica, S.: Self-similar singularities in the kinetics of condensation. J. Low Temp. Phys. 145, 231–265 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Li, W., Lu, X.: Global existence of solutions of the Boltzmann equation for Bose–Einstein particles with anisotropic initial data. J. Funct. Anal. 276, 231–283 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lu, X.: A modified Boltzmann equation for Bose–Einstein particles: isotropic solutions and long-time behavior. J. Stat. Phys. 98, 1335–1394 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lu, X.: On isotropic distributional solutions to the Boltzmann equation for Bose–Einstein particles. J. Stat. Phys. 116, 1597–1649 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lu, X.: The Boltzmann equation for Bose–Einstein particles: velocity concentration and convergence to equilibrium. J. Stat. Phys. 119, 1027–1067 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lu, X.: The Boltzmann equation for Bose–Einstein particles: condensation in finite time. J. Stat. Phys. 150, 1138–1176 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lu, X.: Long time convergence of the Bose–Einstein condensation. J. Stat. Phys. 162, 652–670 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lu, X.: Long time strong convergence to Bose–Einstein distribution for low temperature. Kinet. Relat. Models 11, 715–734 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lukkarinen, J., Spohn, H.: Not to normal order-notes on the kinetic limit for weakly interacting quantum fluids. J. Stat. Phys. 134, 1133–1172 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Markowich, P.A., Pareschi, L.: Fast conservative and entropic numerical methods for the boson Boltzmann equation. Numer. Math. 99, 509–532 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nordheim, L.W.: On the kinetic methods in the new statistics and its applications in the electron theory of conductivity. Proc. R. Soc. Lond. Ser. A 119, 689–698 (1928)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Nouri, A.: Bose–Einstein condensates at very low temperatures: a mathematical result in the isotropic case. Bull. Inst. Math. Acad. Sin. (N.S.) 2, 649–666 (2007)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Rudin, W.: Real and Complex Analysis, third edition. McGraw-Hill Book Co., New York, (1987). xiv+416 pp. ISBN: 0-07-054234-1 00A05 (26-01 30-01 46-01)Google Scholar
  29. 29.
    Semikov, D.V., Tkachev, I.I.: Kinetics of Bose condensation. Phys. Rev. Lett. 74, 3093–3097 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    Semikov, D.V., Tkachev, I.I.: Condensation of Bose in the kinetic regime. Phys. Rev. D 55, 489–502 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    Spohn, H.: Kinetics of the Bose–Einstein condensation. Physica D 239, 627–634 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Uehling, E.A., Uhlenbeck, G.E.: Transport phenomena in Einstein–Bose and Fermi-Dirac gases, I. Phys. Rev. 43, 552–561 (1933)ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    Villani, C.: A Review of Mathematical Topics in Collisional Kinetic Theory. Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam (2002)zbMATHGoogle Scholar
  34. 34.
    Villani, C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234, 455–490 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations