Advertisement

Journal of Statistical Physics

, Volume 175, Issue 2, pp 269–288 | Cite as

Triangle-Well and Ramp Interactions in One-Dimensional Fluids: A Fully Analytic Exact Solution

  • Ana M. Montero
  • Andrés SantosEmail author
Article
  • 62 Downloads

Abstract

The exact statistical-mechanical solution for the equilibrium properties, both thermodynamic and structural, of one-dimensional fluids of particles interacting via the triangle-well and the ramp potentials is worked out. In contrast to previous studies, where the radial distribution function g(r) was obtained numerically from the structure factor by Fourier inversion, we provide a fully analytic representation of g(r) up to any desired distance. The solution is employed to perform an extensive study of the equation of state, the excess internal energy per particle, the residual multiparticle entropy, the structure factor, the radial distribution function, and the direct correlation function. In addition, scatter plots of the bridge function versus the indirect correlation function are used to gauge the reliability of the hypernetted-chain, Percus–Yevick, and Martynov–Sarkisov closures. Finally, the Fisher–Widom and Widom lines are obtained in the case of the triangle-well model.

Keywords

One-dimensional fluids Nearest neighbors Triangle-well model Ramp model Radial distribution function Fisher–Widom line Widom line 

Notes

Acknowledgements

A.M.M. is grateful to the Ministerio de Educación, Cultura y Deporte (Spain) for a Beca-Colaboración during the academic year 2016–2017, which gave rise to this work. The research of A.S. has been supported by the Spanish Agencia Estatal de Investigación through Grant No. FIS2016-76359-P and the Junta de Extremadura (Spain) through Grant No. GR18079, both partially financed by Fondo Europeo de Desarrollo Regional funds.

References

  1. 1.
    Abate, J., Whitt, W.: The Fourier-series method for inverting transforms of probability distributions. Queueing Syst. 10, 5–88 (1992).  https://doi.org/10.1007/BF01158520 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Archer, A.J., Chacko, B., Evans, R.: The standard mean-field treatment of inter-particle attraction in classical DFT is better than one might expect. J. Chem. Phys. 147, 034501 (2017).  https://doi.org/10.1063/1.4993175 ADSCrossRefGoogle Scholar
  3. 3.
    Archer, A.J., Evans, R.: Relationship between local molecular field theory and density functional theory for non-uniform liquids. J. Chem. Phys. 138, 014502 (2013).  https://doi.org/10.1063/1.4771976 ADSCrossRefGoogle Scholar
  4. 4.
    Asakura, S., Oosawa, F.: On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22, 1255–1256 (1954).  https://doi.org/10.1063/1.1740347 ADSCrossRefGoogle Scholar
  5. 5.
    Asakura, S., Oosawa, F.: Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. 33, 183–192 (1958).  https://doi.org/10.1002/pol.1958.1203312618 ADSCrossRefGoogle Scholar
  6. 6.
    Baranyai, A., Evans, D.J.: Direct entropy calculation from computer simulation of liquids. Phys. Rev. A 40, 3817–3822 (1989).  https://doi.org/10.1103/PhysRevA.40.3817 ADSCrossRefGoogle Scholar
  7. 7.
    Baxter, R.J.: Percus-Yevick equation for hard spheres with surface adhesion. J. Chem. Phys. 49, 2770–2774 (1968).  https://doi.org/10.1063/1.1670482 ADSCrossRefGoogle Scholar
  8. 8.
    Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Dover, New York (2008)zbMATHGoogle Scholar
  9. 9.
    Ben-Naim, A., Santos, A.: Local and global properties of mixtures in one-dimensional systems. II. Exact results for the Kirkwood–Buff integrals. J. Chem. Phys 131, 164512 (2009).  https://doi.org/10.1063/1.3256234 ADSCrossRefGoogle Scholar
  10. 10.
    Bishop, M.: Virial coefficients for one-dimensional hard rods. Am. J. Phys. 51, 1151–1152 (1983).  https://doi.org/10.1119/1.13113 ADSCrossRefGoogle Scholar
  11. 11.
    Bishop, M.: WCA perturbation theory for one-dimensional Lennard-Jones fluids. Am. J. Phys. 52, 158–161 (1984).  https://doi.org/10.1119/1.13728 ADSCrossRefGoogle Scholar
  12. 12.
    Bishop, M.: A kinetic theory derivation of the second and third virial coefficients of rigid rods, disks, and spheres. Am. J. Phys. 57, 469–471 (1989).  https://doi.org/10.1119/1.16005 ADSCrossRefGoogle Scholar
  13. 13.
    Bishop, M., Berne, B.J.: Molecular dynamics of one-dimensional hard rods. J. Chem. Phys. 60, 893–897 (1974).  https://doi.org/10.1063/1.1681165 ADSCrossRefGoogle Scholar
  14. 14.
    Bishop, M., Boonstra, M.A.: Comparison between the convergence of perturbation expansions in one-dimensional square and triangle-well fluids. J. Chem. Phys. 79, 1092–1093 (1983).  https://doi.org/10.1063/1.445837 ADSCrossRefGoogle Scholar
  15. 15.
    Bishop, M., Boonstra, M.A.: Exact partition functions for some one-dimensional models via the isobaric ensemble. Am. J. Phys. 51, 564–566 (1983).  https://doi.org/10.1119/1.13204 ADSCrossRefGoogle Scholar
  16. 16.
    Bishop, M., Boonstra, M.A.: A geometrical derivation of the second and third virial coefficients of rigid rods, disks, and spheres. Am. J. Phys. 51, 653–654 (1983).  https://doi.org/10.1119/1.13197 ADSCrossRefGoogle Scholar
  17. 17.
    Bishop, M., Boonstra, M.A.: The influence of the well width on the convergence of perturbation theory for one-dimensional square-well fluids. J. Chem. Phys. 79, 528–529 (1983).  https://doi.org/10.1063/1.445509 ADSCrossRefGoogle Scholar
  18. 18.
    Bishop, M., Swamy, K.N.: Pertubation theory of one-dimensional triangle- and square-well fluids. J. Chem. Phys. 85, 3992–3994 (1986).  https://doi.org/10.1063/1.450921 ADSCrossRefGoogle Scholar
  19. 19.
    Boda, D., Nonner, W., Henderson, D., Eisenberg, B., Gillespie, D.: Volume exclusion in calcium selective channels. Biophys. J. 94, 3486–3496 (2008).  https://doi.org/10.1529/biophysj.107.122796 ADSCrossRefGoogle Scholar
  20. 20.
    Borzi, C., Ord, G., Percus, J.K.: The direct correlation function of a one-dimensional Ising model. J. Stat. Phys. 46, 51–66 (1987).  https://doi.org/10.1007/BF01010330 ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Brader, J.M., Evans, R.: An exactly solvable model for a colloid-polymer mixture in one-dimension. Phys. A 306, 287–300 (2002).  https://doi.org/10.1016/S0378-4371(02)00506-X CrossRefzbMATHGoogle Scholar
  22. 22.
    Brown, W.E.: The Fisher-Widom line for a hard core attractive Yukawa fluid. Mol. Phys. 88, 579–584 (1996).  https://doi.org/10.1080/00268979650026541 ADSCrossRefGoogle Scholar
  23. 23.
    Buldyrev, S.B., Malescio, G., Angell, C.A., Giovanbattista, N., Prestipino, S., Saija, F., Stanley, H.E., Xu, L.: Unusual phase behavior of one-component systems with two-scale isotropic interactions. J. Phys. 21, 504106 (2009).  https://doi.org/10.1088/0953-8984/21/50/504106 Google Scholar
  24. 24.
    Cherney, L.T., Petrov, A.P., Krylov, S.N.: One-dimensional approach to study kinetics of reversible binding of protein on capillary walls. Anal. Chem. 87, 1219–1225 (2015).  https://doi.org/10.1021/ac503880j CrossRefGoogle Scholar
  25. 25.
    Dijkstra, M., Evans, R.: A simulation study of the decay of the pair correlation function in simple fluids. J. Chem. Phys 112, 1449–1456 (2000).  https://doi.org/10.1063/1.480598 ADSCrossRefGoogle Scholar
  26. 26.
    Evans, R., Henderson, J.R., Hoyle, D.C., Parry, A.O., Sabeur, Z.A.: Asymptotic decay of liquid structure: oscillatory liquid-vapour density profiles and the Fisher-Widom line. Mol. Phys. 80, 755–775 (1993).  https://doi.org/10.1080/00268979300102621 ADSCrossRefGoogle Scholar
  27. 27.
    Fantoni, R.: Non-existence of a phase transition for penetrable square wells in one dimension. J. Stat. Mech. p. P07030 (2010).  https://doi.org/10.1088/1742-5468/2010/07/P07030
  28. 28.
    Fantoni, R.: Exact results for one dimensional fluids through functional integration. J. Stat. Phys. 163, 1247–1267 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Fantoni, R.: One-dimensional fluids with positive potentials. J. Stat. Phys. 166, 1334–1342 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Fantoni, R., Giacometti, A., Malijevský, A., Santos, A.: A numerical test of a high-penetrability approximation for the one-dimensional penetrable-square-well model. J. Chem. Phys. 133, 024101 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Fantoni, R., Santos, A.: One-dimensional fluids with second nearest-neighbor interactions. J. Stat. Phys. 169, 1171–1201 (2017).  https://doi.org/10.1007/s10955-017-1908-6 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Fisher, M.E., Widom, B.: Decay of correlations in linear systems. J. Chem. Phys. 50, 3756–3772 (1969).  https://doi.org/10.1063/1.1671624 ADSCrossRefGoogle Scholar
  33. 33.
    Giaquinta, P.V.: Entropy and ordering of hard rods in one dimension. Entropy 10, 248–260 (2008).  https://doi.org/10.3390/e10030248 ADSCrossRefGoogle Scholar
  34. 34.
    Giaquinta, P.V., Giunta, G.: About entropy and correlations in a fluid of hard spheres. Phys. A 187, 145–158 (1992).  https://doi.org/10.1016/0378-4371(92)90415-M CrossRefGoogle Scholar
  35. 35.
    Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids, 3rd edn. Academic Press, London (2006)zbMATHGoogle Scholar
  36. 36.
    Harnett, J., Bishop, M.: Monte Carlo simulations of one dimensional hard particle systems. Comput. Educ. J. 18, 73–78 (2008)Google Scholar
  37. 37.
    Herzfeld, K.F., Goeppert-Mayer, M.: On the states of aggregation. J. Chem. Phys. 2, 38–44 (1934).  https://doi.org/10.1063/1.1749355 ADSCrossRefGoogle Scholar
  38. 38.
    Heying, M., Corti, D.S.: The one-dimensional fully non-additive binary hard rod mixture: exact thermophysical properties. Fluid Phase Equil. 220, 85–103 (2004).  https://doi.org/10.1016/j.fluid.2004.02.018 CrossRefGoogle Scholar
  39. 39.
    Huang, K.: Statistical Mechanics. Wiley, New York (1963)Google Scholar
  40. 40.
    Katsura, S., Tago, Y.: Radial distribution function and the direct correlation function for one-dimensional gas with square-well potential. J. Chem. Phys. 48, 4246–4251 (1968).  https://doi.org/10.1063/1.1669764 ADSCrossRefGoogle Scholar
  41. 41.
    Kikuchi, R.: Theory of one-dimensional fluid binary mixtures. J. Chem. Phys. 23, 2327–2332 (1955).  https://doi.org/10.1063/1.1741874 ADSCrossRefGoogle Scholar
  42. 42.
    Korteweg, D.T.: On van der Waals’s isothermal equation. Nature 45, 152–154 (1891).  https://doi.org/10.1038/045277a0 ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    Kyakuno, H., Matsuda, K., Yahiro, H., Inami, Y., Fukuoka, T., Miyata, Y., Yanagi, K., Maniwa, Y., Kataura, H., Saito, T., Yumura, M., Iijima, S.: Confined water inside single-walled carbon nanotubes: global phase diagram and effect of finite length. J. Chem. Phys. 134, 244,501 (2011).  https://doi.org/10.1063/1.3593064 CrossRefGoogle Scholar
  44. 44.
    Lebowitz, J.L., Percus, J.K., Zucker, I.J.: Radial distribution functions in crystals and fluids. Bull. Am. Phys. Soc. 7, 415–415 (1962)Google Scholar
  45. 45.
    Lebowitz, J.L., Zomick, D.: Mixtures of hard spheres with nonadditive diameters: some exact results and solution of PY equation. J. Chem. Phys. 54, 3335–3346 (1971).  https://doi.org/10.1063/1.1675348 ADSCrossRefGoogle Scholar
  46. 46.
    Lei, Z., Krauth, W.: Mixing and perfect sampling in one-dimensional particle systems. EPL 124, 20003 (2018).  https://doi.org/10.1209/0295-5075/124/20003 ADSCrossRefGoogle Scholar
  47. 47.
    Lomba, E., Almarza, N.G., Martín, C., McBride, C.: Phase behavior of attractive and repulsive ramp fluids: integral equation and computer simulation studies. J. Chem. Phys. 126, 244,510 (2007).  https://doi.org/10.1063/1.2748043 CrossRefGoogle Scholar
  48. 48.
    López de Haro, M., Rodríguez-Rivas, A., Yuste, S.B., Santos, A.: Structural properties of the Jagla fluid. Phys. Rev. E 98, 012,138 (2018).  https://doi.org/10.1103/PhysRevE.98.012138 CrossRefGoogle Scholar
  49. 49.
    Rayleigh, L.: On the virial of a system of hard colliding bodies. Nature 45, 80–82 (1891).  https://doi.org/10.1038/045080a0 ADSCrossRefzbMATHGoogle Scholar
  50. 50.
    Luo, J., Xu, L., Angell, C.A., Stanley, H.E., Buldyrev, S.V.: Physics of the Jagla model as the liquid-liquid coexistence line slope varies. J. Chem. Phys. 142, 224,501 (2015).  https://doi.org/10.1063/1.4921559 CrossRefGoogle Scholar
  51. 51.
    Majumder, M., Chopra, N., Hinds, B.J.: Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5, 3867–3877 (2011).  https://doi.org/10.1021/nn200222g CrossRefGoogle Scholar
  52. 52.
    Martynov, G.A., Sarkisov, G.N.: Exact equations and the theory of liquids. Mol. Phys. 49, 1495–1504 (1983).  https://doi.org/10.1080/00268978300102111 ADSCrossRefGoogle Scholar
  53. 53.
    Mattis, D.C. (ed.): The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension. World Scientific, Singapore (1994)zbMATHGoogle Scholar
  54. 54.
    Montero, A.M.: Correlation functions and thermophysical properties of one-dimensional liquids. arXiv:1710.01118 (2017)
  55. 55.
    Montero, A.M., Santos, A.: Radial Distribution Function for One-Dimensional Triangle Well and Ramp Fluids, Wolfram Demonstrations Project (2017). http://demonstrations.wolfram.com/RadialDistributionFunctionForOneDimensionalTriangleWellAndRa/
  56. 56.
    Morita, T.: Theory of classical fluids: Hyper-netted chain approximation, I: formulation for a one-component system. Prog. Theor. Phys. 20, 920–938 (1958).  https://doi.org/10.1143/PTP.20.920 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Nagamiya, T.: Statistical mechanics of one-dimensional substances I. Proc. Phys. Math. Soc. Jpn. 22, 705–720 (1940).  https://doi.org/10.11429/ppmsj1919.22.8-9_705 MathSciNetzbMATHGoogle Scholar
  58. 58.
    Nagamiya, T.: Statistical mechanics of one-dimensional substances II. Proc. Phys.- Math. Soc. Jpn. 22, 1034–1047 (1940).  https://doi.org/10.11429/ppmsj1919.22.12_1034 MathSciNetzbMATHGoogle Scholar
  59. 59.
    Nettleton, R.E., Green, M.S.: Expression in terms of molecular distribution functions for the entropy density in an infinite system. J. Chem. Phys. 29, 1365–1370 (1958).  https://doi.org/10.1063/1.1744724 ADSCrossRefGoogle Scholar
  60. 60.
    Percus, J.K.: Equilibrium state of a classical fluid of hard rods in an external field. J. Stat. Phys. 15, 505–511 (1976).  https://doi.org/10.1007/BF01020803 ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Percus, J.K.: One-dimensional classical fluid with nearest-neighbor interaction in arbitrary external field. J. Stat. Phys. 28, 67–81 (1982).  https://doi.org/10.1007/BF01011623 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Percus, J.K., Yevick, G.J.: Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev. 110, 1–13 (1958).  https://doi.org/10.1103/PhysRev.110.1 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Pieprzyk, S., Brańka, A.C., Heyes, D.M.: Representation of the direct correlation function of the hard-sphere fluid. Phys. Rev. E 95, 062,104 (2017).  https://doi.org/10.1103/PhysRevE.95.062104 CrossRefGoogle Scholar
  64. 64.
    Raju, M., Banuti, D.T., Ma, P.C., Ihme, M.: Widom lines in binary mixtures of supercritical fluids. Sci. Rep. 7, 3027 (2017).  https://doi.org/10.1038/s41598-017-03334-3 ADSCrossRefGoogle Scholar
  65. 65.
    Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1999)CrossRefzbMATHGoogle Scholar
  66. 66.
    Ruppeiner, G., Dyjack, N., McAloon, A., Stoops, J.: Solid-like features in dense vapors near the fluid critical point. J. Chem. Phys. 146, 224501 (2017).  https://doi.org/10.1063/1.4984915 ADSCrossRefGoogle Scholar
  67. 67.
    Rybicki, G.B.: Exact statistical mechanics of a one-dimensional self-gravitating system. Astrophys. Space Sci. 14, 56–72 (1971).  https://doi.org/10.1007/BF00649195 ADSCrossRefGoogle Scholar
  68. 68.
    Salsburg, Z.W., Zwanzig, R.W., Kirkwood, J.G.: Molecular distribution functions in a one-dimensional fluid. J. Chem. Phys. 21, 1098–1107 (1953).  https://doi.org/10.1063/1.1699116 ADSCrossRefGoogle Scholar
  69. 69.
    Santos, A.: Exact bulk correlation functions in one-dimensional nonadditive hard-core mixtures. Phys. Rev. E 76, 062201 (2007).  https://doi.org/10.1103/PhysRevE.76.062201 ADSCrossRefGoogle Scholar
  70. 70.
    Santos, A.: Radial Distribution Function for Sticky Hard Rods, Wolfram Demonstrations Project (2012). http://demonstrations.wolfram.com/RadialDistributionFunctionForStickyHardRods/
  71. 71.
    Santos, A.: Playing with marbles: Structural and thermodynamic properties of hard-sphere systems. In: Cichocki, B., Napiórkowski, M., Piasecki, J. (eds.) 5th Warsaw School of Statistical Physics. Warsaw University Press, Warsaw (2014). arXiv:1310.5578 Google Scholar
  72. 72.
    Santos, A.: Radial Distribution Function for One-Dimensional Square-Well and Square-Shoulder Fluids, Wolfram Demonstrations Project (2015). http://demonstrations.wolfram.com/RadialDistributionFunctionForOneDimensionalSquareWellAndSqua/
  73. 73.
    Santos, A.: Radial Distribution Functions for Nonadditive Hard-Rod Mixtures, Wolfram Demonstrations Project, (2015). http://demonstrations.wolfram.com/RadialDistributionFunctionsForNonadditiveHardRodMixtures/
  74. 74.
    Santos, A.: A Concise Course on the Theory of Classical Liquids. Basics and Selected Topics, Lecture Notes in Physics, vol. 923. Springer, New York (2016)Google Scholar
  75. 75.
    Santos, A., Fantoni, R., Giacometti, A.: Penetrable square-well fluids: exact results in one dimension. Phys. Rev. E 77, 051206 (2008)ADSCrossRefGoogle Scholar
  76. 76.
    Santos, A., Saija, F., Giaquinta, P.V.: Residual multiparticle entropy for a fractal fluid of hard spheres. Entropy 20, 544 (2018).  https://doi.org/10.3390/e20070544 ADSCrossRefGoogle Scholar
  77. 77.
    Sarkanych, P., Holovatch, Y., Kenna, R.: Classical phase transitions in a one-dimensional short-range spin model. J. Phys. A 51, 505001 (2018).  https://doi.org/10.1088/1751-8121/aaea02 MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Schmidt, M.: Fundamental measure density functional theory for nonadditive hard-core mixtures: the one-dimensional case. Phys. Rev. E 76, 031202 (2007).  https://doi.org/10.1103/PhysRevE.76.031202 ADSCrossRefGoogle Scholar
  79. 79.
    Solana, J.R.: Perturbation Theories for the Thermodynamic Properties of Fluids and Solids. CRC Press, Boca Raton (2013)CrossRefzbMATHGoogle Scholar
  80. 80.
    Takahasi, H.: Eine einfache methode zur behandlung der statistischen mechanik eindimensionaler substanzen. Proc. Phys. Math. Soc. Jpn. 24, 60–62 (1942).  https://doi.org/10.11429/ppmsj1919.24.0_60 MathSciNetGoogle Scholar
  81. 81.
    Tarazona, P., Chacón, E., Velasco, E.: The Fisher-Widom line for systems with low melting temperature. Mol. Phys. 101, 1595–1603 (2003).  https://doi.org/10.1080/0026897031000068550 ADSCrossRefGoogle Scholar
  82. 82.
    Tonks, L.: The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev. 50, 955–963 (1936).  https://doi.org/10.1103/PhysRev.50.955 ADSCrossRefzbMATHGoogle Scholar
  83. 83.
    van Hove, L.: Sur l’intégrale de configuration pour les systèmes de particules à une dimension. Physica 16, 137–143 (1950).  https://doi.org/10.1016/0031-8914(50)90072-3 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    van Leeuwen, J.M.J., Groeneveld, J., de Boer, J.: New method for the calculation of the pair correlation function. Physica 25, 792–808 (1959).  https://doi.org/10.1016/0031-8914(59)90004-7 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Vega, C., Rull, L.F., Lago, S.: Location of the Fisher-Widom line for systems interacting through short-ranged potentials. Phys. Rev. E 51, 3146–3155 (1995).  https://doi.org/10.1103/PhysRevE.51.3146 ADSCrossRefGoogle Scholar
  86. 86.
    Vrij, A.: Polymers at interfaces and the interactions in colloidal dispersions. Pure Appl. Chem. 48, 471–483 (1976).  https://doi.org/10.1351/pac197648040471 CrossRefGoogle Scholar
  87. 87.
    Škrbić, T., Badasyan, A., Hoang, T.X., Podgornik, R., Giacometti, A.: From polymers to proteins: the effect of side chains and broken symmetry on the formation of secondary structures within a Wang-Landau approach. Soft Matter 12, 4783–4793 (2016).  https://doi.org/10.1039/c6sm00542j ADSCrossRefGoogle Scholar
  88. 88.
    Xu, L., Buldyrev, S.V., Angell, C.A., Stanley, H.E.: Thermodynamics and dynamics of the two-scale spherically symmetric Jagla ramp model of anomalous liquids. Phys. Rev. E 74, 031108 (2006).  https://doi.org/10.1103/PhysRevE.74.031108 ADSCrossRefGoogle Scholar
  89. 89.
    Xu, L., Ehrenberg, I., Buldyrev, S.V., Stanley, H.E.: Relationship between the liquid-liquid phase transition and dynamic behaviour in the Jagla model. J. Phys. 18, S2239–S2246 (2006).  https://doi.org/10.1088/0953-8984/18/36/S01 Google Scholar
  90. 90.
    Xu, L., Kumar, P., Buldyrev, S.V., Chen, S.H., Poole, P.H., Sciortino, F., Stanley, H.E.: Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition. Proc. Natl. Acad. Sci. USA 102, 16558–16562 (2005).  https://doi.org/10.1073/pnas.0507870102 ADSCrossRefGoogle Scholar
  91. 91.
    Yuste, S.B., Santos, A.: Radial distribution function for sticky hard-core fluids. J. Stat. Phys. 72, 703–720 (1993).  https://doi.org/10.1007/BF01048029 ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aachen Institute for Advanced Study in Computational Engineering ScienceRWTH Aachen UniversityAachenGermany
  2. 2.Departamento de FísicaUniversidad de ExtremaduraBadajozSpain
  3. 3.Instituto de Computación Científica Avanzada (ICCAEx)Universidad de ExtremaduraBadajozSpain

Personalised recommendations