Advertisement

Recursion for the Smallest Eigenvalue Density of \(\beta \)-Wishart–Laguerre Ensemble

  • Santosh KumarEmail author
Article

Abstract

The statistics of the smallest eigenvalue of Wishart–Laguerre ensemble is important from several perspectives. The smallest eigenvalue density is typically expressible in terms of determinants or Pfaffians. These results are of utmost significance in understanding the spectral behavior of Wishart–Laguerre ensembles and, among other things, unveil the underlying universality aspects in the asymptotic limits. However, obtaining exact and explicit expressions by expanding determinants or Pfaffians becomes impractical if large dimension matrices are involved. For the real matrices (\(\beta =1\)) Edelman has provided an efficient recurrence scheme to work out exact and explicit results for the smallest eigenvalue density which does not involve determinants or matrices. Very recently, an analogous recurrence scheme has been obtained for the complex matrices (\(\beta =2\)). In the present work we extend this to \(\beta \)-Wishart–Laguerre ensembles for the case when exponent \(\alpha \) in the associated Laguerre weight function, \(\lambda ^\alpha e^{-\beta \lambda /2}\), is a non-negative integer, while \(\beta \) is positive real. This also gives access to the smallest eigenvalue density of fixed trace \(\beta \)-Wishart–Laguerre ensemble, as well as moments for both cases. Moreover, comparison with earlier results for the smallest eigenvalue density in terms of certain hypergeometric function of matrix argument results in an effective way of evaluating these explicitly. Exact evaluations for large values of n (the matrix dimension) and \(\alpha \) also enable us to compare with Tracy–Widom density and large deviation results of Katzav and Castillo. We also use our result to obtain the density of the largest of the proper delay times which are eigenvalues of the Wigner–Smith matrix and are relevant to the problem of quantum chaotic scattering.

Keywords

\(\beta \)-Wishart–Laguerre ensemble Smallest eigenvalue Recursion relation Tracy–Widom density Large deviations Proper delay times 

Notes

Acknowledgements

The author is grateful to Prof. Katzav for fruitful correspondences. He also thanks the anonymous reviewer whose comments helped improve the manuscript. This work has been supported by the grant EMR/2016/000823 provided by SERB, DST, Government of India.

References

  1. 1.
    Mehta, M.L.: Random Matrices, 3rd edn. Academic Press, New York (2004)zbMATHGoogle Scholar
  2. 2.
    Forrester, P.J.: Log-Gases and Random Matrices (LMS-34). Princeton University Press, Princeton, NJ (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Gnanadesikan, R.: Methods for Statistical Data Analysis of Multivariate Observations, 2nd edn. Wiley, New York (1997)CrossRefzbMATHGoogle Scholar
  4. 4.
    Park, C.S., Lee, K.B.: Statistical multimode transmit antenna selection for limited feedback MIMO systems. IEEE Trans. Wirel. Commun. 7, 4432 (2008).  https://doi.org/10.1109/T-WC.2008.060213 CrossRefGoogle Scholar
  5. 5.
    Nishigaki, S.M., Damgaard, P.H., Wettig, T.: Smallest Dirac eigenvalue distribution from random matrix theory. Phys. Rev. D 58, 087704 (1998).  https://doi.org/10.1103/PhysRevD.58.087704 ADSCrossRefGoogle Scholar
  6. 6.
    Damgaard, P.H., Nishigaki, S.M.: Distribution of the kth smallest Dirac operator eigenvalue. Phys. Rev. D. 63, 045012 (2001).  https://doi.org/10.1103/PhysRevD.63.045012 ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52, 5406 (2006).  https://doi.org/10.1109/TIT.2006.885507 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Majumdar, S.N., Bohigas, O., Lakshminarayan, A.: Exact minimum eigenvalue distribution of an entangled random pure state. J. Phys. Stat. 131, 33 (2008).  https://doi.org/10.1007/s10955-008-9491-5 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Majumdar, S.N.: Extreme eigenvalues of wishart matrices: application to entangled bipartite system. In: Akemann, G. (ed.) Handbook of Random Matrix Theory. Oxford Press, New York (2011)Google Scholar
  10. 10.
    Chen, Y., Liu, D.-Z., Zhou, D.-S.: Smallest eigenvalue distribution of the fixed-trace Laguerre-ensemble. J. Phys. A: Math. Theor. 43, 315303 (2010).  https://doi.org/10.1088/1751-8113/43/31/315303 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Akemann, G., Vivo, P.: Compact smallest eigenvalue expressions in Wishart-Laguerre ensembles with or without a fixed trace. J. Mech. Stat. 2011, P05020 (2011).  https://doi.org/10.1088/1742-5468/2011/05/P05020 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kumar, S., Sambasivam, B., Anand, S.: Smallest eigenvalue density for regular or fixed-trace complex Wishart-Laguerre ensemble and entanglement in coupled kicked tops. J. Phys. A: Math. Theor. 50, 345201 (2017).  https://doi.org/10.1088/1751-8121/aa7d0e MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Edelman, A., Guionnet, A., Péché, S.: Beyond universality in random matrix theory. Ann. Probab. Appl. 26, 1659 (2016).  https://doi.org/10.1214/15-AAP1129 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Khatri, C.G.: Distribution of the largest or the smallest characteristic root under null hypothesis concerning complex multivariate normal populations. Ann. Stat. Math. 35, 1807 (1964).  https://doi.org/10.1214/aoms/1177700403 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Forrester, P.J., Hughes, T.D.: Complex Wishart matrices and conductance in mesoscopic systems: exact results. J. Phys. Math. 35, 6739 (1994).  https://doi.org/10.1063/1.530639 MathSciNetzbMATHGoogle Scholar
  16. 16.
    Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys. B 402, 709 (1993).  https://doi.org/10.1016/0550-3213(93)90126-A ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Forrester, P.J.: Exact results and universal asymptotics in the Laguerre random matrix ensemble. J. Phys. Math. 35, 2539 (1994).  https://doi.org/10.1063/1.530883 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nagao, T., Forrester, P.J.: The smallest eigenvalue distribution at the spectrum edge of random matrices. Nucl. Phys. B. 509, 561 (1998).  https://doi.org/10.1016/S0550-3213(97)00670-6 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zanella, A., Chiani, M., Win, M.Z.: On the marginal distribution of the eigenvalues of Wishart matrices. IEEE Trans. Commun. 57, 1050 (2009).  https://doi.org/10.1109/TCOMM.2009.04.070143 CrossRefGoogle Scholar
  20. 20.
    Forrester, P.J.: Eigenvalue distributions for some correlated complex sample covariance matrices. J. Phys. A: Math. Theor. 40, 11093 (2007).  https://doi.org/10.1088/1751-8113/40/36/009 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wirtz, T., Guhr, T.: Distribution of the smallest eigenvalue in the correlated Wishart model. Phys. Lett. Rev. 111, 094101 (2013).  https://doi.org/10.1103/PhysRevLett.111.094101 ADSCrossRefGoogle Scholar
  22. 22.
    Edelman, A.: Eigenvalues and condition numbers of random matrices. Ph.D. thesis, MIT. http://www-math.mit.edu/~edelman/publications/eigenvalues_and_condition_numbers.pdf (1989)
  23. 23.
    Edelman, A.: The distribution and moments of the smallest eigenvalue of a random matrix of Wishart type. Linear Appl. Alg. 159, 55 (1991).  https://doi.org/10.1016/0024-3795(91)90076-9 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Phys. Lett. B 305, 115 (1993).  https://doi.org/10.1016/0370-2693(93)91114-3 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Phys. Math. 159, 151 (1994).  https://doi.org/10.1007/BF02100489 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tracy, C.A., Widom, H.: Level spacing distributions and the Bessel kernel. Commun. Phys. Math. 161, 289 (1994).  https://doi.org/10.1007/BF02099779 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Feldheim, O.N., Sodin, S.: A universality result for the smallest eigenvalues of certain sample covariance matrices. Geom. Funct. Anal. 20, 88 (2010).  https://doi.org/10.1007/s00039-010-0055-x MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Katzav, E., Castillo, I.P.: Large deviations of the smallest eigenvalue of the Wishart-Laguerre ensemble. Phys. Rev. E 82(R), 040104 (2010).  https://doi.org/10.1103/PhysRevE.82.040104 ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Haake, F., Kuś, M., Scharf, R.: Classical and quantum chaos for a kicked top. Z. Phys. B Condens. Matter 65, 381 (1987).  https://doi.org/10.1007/BF01303727 ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Haake, F.: Quantum Signatures of Chaos, 3rd edn. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  31. 31.
    Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43, 5830 (2002).  https://doi.org/10.1063/1.4818304 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Eisenbud, L.: The formal properties of nuclear collisions. PhD Thesis. Princeton University, Princeton (1948)Google Scholar
  33. 33.
    Wigner, E.P.: Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98, 145 (1995).  https://doi.org/10.1103/PhysRev.98.145 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Smith, F.T.: Lifetime matrix in collision theory. Phys. Rev. 118, 349 (1960).  https://doi.org/10.1103/PhysRev.118.349 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Brouwer, P.W., Frahm, K.M., Beenakker, C.W.J.: Quantum mechanical time-delay matrix in chaotic scattering. Phys. Rev. Lett. 78, 4737 (1997).  https://doi.org/10.1103/PhysRevLett.78.4737 ADSCrossRefGoogle Scholar
  36. 36.
    Brouwer, P.W., Frahm, K.M., Beenakker, C.W.J.: Distribution of the quantum mechanical time-delay matrix for a chaotic cavity. Waves Random Media 9, 91 (1999).  https://doi.org/10.1088/0959-7174/9/2/303 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Sommers, H.-J., Savin, D.V., Sokolov, V.V.: Distribution of proper delay times in quantum chaotic scattering: a crossover from ideal to weak coupling. Phys. Rev. Lett. 87, 094101 (2001).  https://doi.org/10.1103/PhysRevLett.87.094101 ADSCrossRefGoogle Scholar
  38. 38.
    Texier, C.: Wigner time delay and related concepts: application to transport in coherent conductors. Phys. E Low Dimens. Syst. Nanostruct. 82, 16 (2016).  https://doi.org/10.1016/j.physe.2015.09.041 ADSCrossRefGoogle Scholar
  39. 39.
    Fyodorov, Y.V., Sommers, H.-J.: Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: random matrix approach for systems with broken time-reversal invariance. J. Math. Phys. 38, 1918 (1997).  https://doi.org/10.1063/1.531919 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Ramírez, J., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Math. Soc. Am. 24, 919 (2011).  https://doi.org/10.1090/S0894-0347-2011-00703-0 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Majumdar, S.N., Schehr, G.: Top eigenvalue of a random matrix: large deviations and third order phase transition. J. Stat. Mech. 2014, P01012 (2014)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Borot, G., Eynard, B., Majumdar, S.N., Nadal, C.: Large deviations of the maximal eigenvalue of random matrices. J. Stat. Mech. Theory Exp. 2011, P11024 (2011).  https://doi.org/10.1088/1742-5468/2011/11/P11024 MathSciNetCrossRefGoogle Scholar
  43. 43.
    Borot, G., Nadal, C.: Right tail expansion of Tracy-Widom beta laws. Random Matrices: Theory Appl. 01, 1250006 (2012).  https://doi.org/10.1142/S2010326312500062 MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Dumaz, L., Virág, B.: The right tail exponent of the Tracy-Widom-distribution. Ann. Inst. H. Poincaré Probab. Stat. 49, 915 (2013).  https://doi.org/10.1214/11-AIHP475 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Forrester, P.J., Rahman, A.A., Witte, N.S.: Large N expansions for the Laguerre and Jacobi-ensembles from the loop equations. J. Math. Phys. 58, 113303 (2017).  https://doi.org/10.1063/1.4997778 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Killip, R., Nenciu, I.: Matrix models for circular ensembles. Int. Math. Res. Not. 2004, 2664 (2004).  https://doi.org/10.1155/S1073792804141597 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Forrester, P.J.: Beta Random Matrix Ensembles. Lecture Notes Series, IMS, NUS, vol. 18. World Scientific, Singapore (2009)Google Scholar
  48. 48.
    Desrosiers, P., Liu, D.-Z.: Asymptotics for products of characteristic polynomials in classical \(\beta \)-ensembles. Constr. Approx. 39, 273 (2014).  https://doi.org/10.1007/s00365-013-9206-2 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Desrosiers, P., Forrester, P.J.: Hermite and Laguerre \(\beta \)-ensembles: asymptotic corrections to the eigenvalue density. Nucl. Phys. B 743, 307 (2006).  https://doi.org/10.1016/j.nuclphysb.2006.03.002 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Caër G, L., Male, C., Delannay, R.: Nearest-neighbour spacing distributions of the \(\beta \)-Hermite ensemble of random matrices. Physica A 383, 190 (2007).  https://doi.org/10.1016/j.physa.2007.04.057 ADSCrossRefGoogle Scholar
  51. 51.
    Dumitriu, I., Edelman, A.: Global spectrum fluctuations for the \(\beta \)-Hermite and \(\beta \)-Laguerre ensembles via matrix models. J. Math. Phys. 47, 063302 (2006).  https://doi.org/10.1063/1.2200144 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Papenbrock, T., Pluhar, Z., Weidenmüller, H.A.: Level repulsion in constrained Gaussian random-matrix ensembles. J. Phys. A: Math. Gen. 39, 9709 (2006).  https://doi.org/10.1088/0305-4470/39/31/004 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Shukla, P., Sadhukhan, S.: Random matrix ensembles with column/row constraints: I. J. Phys. A: Math. Theor. 48, 415002 (2015).  https://doi.org/10.1088/1751-8113/48/41/415002 MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Shukla, P., Sadhukhan, S.: Random matrix ensembles with column/row constraints: II. J. Phys. A: Math. Theor. 48, 415003 (2015).  https://doi.org/10.1088/1751-8113/48/41/415003 MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Rosenzweig, N.: In: Uhlenbeck, G. et al. (eds.) Statistical Physics. Benjamin, New York (1963)Google Scholar
  56. 56.
    Bronk, B.V.: Topics in the Theory of Random Matrices. Ph. D. thesis. Princeton University, Princeton (1964)Google Scholar
  57. 57.
    Akemann, G., Cicuta, G.M., Molinari, L., Vernizzi, G.: Compact support probability distributions in random matrix theory. Phys. Rev. E 59, 1489 (1999).  https://doi.org/10.1103/PhysRevE.59.1489 ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Lloyd, S., Pagels, H.: Complexity as thermodynamic depthe. Ann. Phys. 188, 186 (1988).  https://doi.org/10.1016/0003-4916(88)90094-2 ADSCrossRefGoogle Scholar
  59. 59.
    Życzkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A: Math. Gen. 34, 7111 (2001).  https://doi.org/10.1088/0305-4470/34/35/335 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Page, D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291 (1993).  https://doi.org/10.1103/PhysRevLett.71.1291 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Kumar, S., Pandey, A.: Entanglement in random pure states: spectral density and average von Neumann entropy. J. Phys. A: Math. Theor. 44, 445301 (2011).  https://doi.org/10.1088/1751-8113/44/44/445301 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Vivo, P., Pato, M.P., Oshanin, G.: Random pure states: quantifying bipartite entanglement beyond the linear statistics. Phys. Rev. E 93, 052106 (2016).  https://doi.org/10.1103/PhysRevE.93.052106 ADSCrossRefGoogle Scholar
  63. 63.
    Wei, L.: Proof of Vivo-Pato-Oshanin’s conjecture on the fluctuation of von Neumann entropy. Phys. Rev. E 96, 022106 (2017).  https://doi.org/10.1103/PhysRevE.96.022106 ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    Forrester, P.J.: Recurrence equations for the computation of correlations in the \(1/r^2\) quantum many-body system. J. Stat. Phys. 72, 39 (1993).  https://doi.org/10.1007/BF01048039 ADSCrossRefzbMATHGoogle Scholar
  65. 65.
    Forrester, P.J., Rains, E.M.: A Fuchsian matrix differential equation for Selberg correlation integrals. Commun. Math. Phys. 309, 771 (2012).  https://doi.org/10.1007/s00220-011-1305-y ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Forrester, P.J., Ito, M.: Difference system for Selberg correlation integrals. J. Phys. A: Math. Theor. 43, 175202 (2010).  https://doi.org/10.1088/1751-8113/43/17/175202 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Savin, D.V., Sommers, H.-J., Wieczorek, W.: Nonlinear statistics of quantum transport in chaotic cavities. Phys. Rev. B 77, 125332 (2008).  https://doi.org/10.1103/PhysRevB.77.125332 ADSCrossRefGoogle Scholar
  68. 68.
    Akemann, G., Guhr, T., Kieburg, M., Wegner, R., Wirtz, T.: Completing the picture for the smallest eigenvalue of real Wishart matrices. Phys. Rev. Lett. 113, 250201 (2014).  https://doi.org/10.1103/PhysRevLett.113.250201 ADSCrossRefzbMATHGoogle Scholar
  69. 69.
    Wirtz, T., Akemann, G., Guhr, T., Kieburg, M., Wegner, R.: The smallest eigenvalue distribution in the real Wishart-Laguerre ensemble with even topology. J. Phys. A: Math. Theor. 48, 245202 (2015).  https://doi.org/10.1088/1751-8113/48/24/245202 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Fyodorov, Y.V., Nock, A.: On random matrix averages involving half-integer powers of GOE characteristic polynomials. J. Stat. Phys. 159, 731 (2015).  https://doi.org/10.1007/s10955-015-1209-x ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Berbenni-Bitsch, M.E., Meyer, S., Wettig, T.: Microscopic universality with dynamical fermions. Phys. Rev. D 58(R), 71502 (1998).  https://doi.org/10.1103/PhysRevD.58.071502 ADSCrossRefGoogle Scholar
  72. 72.
    Wolfram Research Inc. Mathematica Version 11.0. Wolfram Research Inc, Champaign, IL (2016)Google Scholar
  73. 73.
    Koev, P., Edelman, A.: The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comput. 75, 833 (2006). http://www.ams.org/journals/mcom/2006-75-254/S0025-5718-06-01824-2/S0025-5718-06-01824-2.pdf
  74. 74.
    Koev, P.: Hypergeometric Function of a Matrix Argument, Online (2008). http://www-math.mit.edu/~plamen/software/mhgref.html
  75. 75.
    Borodin, A., Forrester, P.J.: Increasing subsequences and the hard-to-soft edge transition in matrix ensembles. J. Phys. A: Math. Gen. 36, 2963 (2003).  https://doi.org/10.1088/0305-4470/36/12/307 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Ma, Z.: Accuracy of the Tracy-Widom limits for the extreme eigenvalues in white Wishart matrices. Bernoulli 18, 322 (2012).  https://doi.org/10.3150/10-BEJ334 MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Baik, J., Buckingham, R., DiFranco, J.: Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function. Commun. Math. Phys. 280, 463 (2008).  https://doi.org/10.1007/s00220-008-0433-5 ADSCrossRefzbMATHGoogle Scholar
  78. 78.
    Brouwer, P.W., van Langen, S.A., Frahm, K.M., Büttiker, M., Beenakker, C.W.J.: Distribution of parametric conductance derivatives of a quantum dot. Phys. Rev. Lett. 79, 913 (1997).  https://doi.org/10.1103/PhysRevLett.79.913 ADSCrossRefGoogle Scholar
  79. 79.
    Schomerus, H., van Bemmel, K.J.H., Beenakker, C.W.J.: Localization-induced coherent backscattering effect in wave dynamics. Phys. Rev. E 63, 026605 (2001).  https://doi.org/10.1103/PhysRevE.63.026605 ADSCrossRefGoogle Scholar
  80. 80.
    Marciani, M., Brouwer, P.W., Beenakker, C.W.J.: Time-delay matrix, midgap spectral peak, and thermopower of an Andreev billiard. Phys. Rev. B 90, 045403 (2014).  https://doi.org/10.1103/PhysRevB.90.045403 ADSCrossRefGoogle Scholar
  81. 81.
    Schomerus, H., Marciani, M., Beenakker, C.W.J.: Effect of chiral symmetry on chaotic scattering from majorana zero modes. Phys. Rev. Lett. 114, 166803 (2015).  https://doi.org/10.1103/PhysRevLett.114.166803 ADSCrossRefGoogle Scholar
  82. 82.
    Mezzadri, F., Simm, N.J.: Moments of the transmission eigenvalues, proper delay times, and random matrix theory: I. J. Math. Phys. 52, 103511 (2011).  https://doi.org/10.1063/1.3644378 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Mezzadri, F., Simm, N.J.: Moments of the transmission eigenvalues, proper delay times and random matrix theory: II. J. Math. Phys. 53, 053504 (2012).  https://doi.org/10.1063/1.4708623 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Mezzadri, F., Simm, N.J.: \(\tau \)-function theory of quantum chaotic transport with \(\beta \) = 1, 2, 4. Commun. Math. Phys. 324, 465 (2013).  https://doi.org/10.1007/s00220-013-1813-z ADSCrossRefzbMATHGoogle Scholar
  85. 85.
    Texier, C., Majumdar, S.N.: Wigner time-delay distribution in chaotic cavities and freezing transition. Phys. Rev. Lett. 110, 250602 (2013).  https://doi.org/10.1103/PhysRevLett.110.250602 ADSCrossRefGoogle Scholar
  86. 86.
    Kuipers, J., Savin, D.V., Sieber, M.: Efficient semiclassical approach for time delays. New J. Phys. 16, 123018 (2014).  https://doi.org/10.1088/1367-2630/16/12/123018 ADSCrossRefGoogle Scholar
  87. 87.
    Cunden, F.D.: Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities. Phys. Rev. E 91(R), 060102 (2015).  https://doi.org/10.1103/PhysRevE.91.060102 ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    Cunden, F.D., Mezzadri, F., Simm, N., Vivo, P.: Correlators for the Wigner-Smith time-delay matrix of chaotic cavities. J. Phys. A: Math. Theor. 49, 18LT01 (2016).  https://doi.org/10.1088/1751-8113/49/18/18LT01 MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Cunden, F.D., Mezzadri, F., Simm, N., Vivo, P.: Large-N expansion for the time-delay matrix of ballistic chaotic cavities. J. Math. Phys. 57, 111901 (2016).  https://doi.org/10.1063/1.4966642 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    Mahaux, C., Weidenmüller, H.A.: Shell Model Approach to Nuclear Reactions. North Holland, Amsterdam (1969)Google Scholar
  91. 91.
    Verbaarschot, J.J.M., Weidenmüller, H.A., Zirnbauer, M.R.: Grassmann integration in stochastic quantum physics: the case of compound-nucleus scattering. Phys. Rep. 129, 367 (1985).  https://doi.org/10.1016/0370-1573(85)90070-5 ADSMathSciNetCrossRefGoogle Scholar
  92. 92.
    Kumar, S., Nock, A., Sommers, H.-J., Guhr, T., Dietz, B., Miski-Oglu, M., Richter, A., Schäfer, : Distribution of scattering matrix elements in quantum chaotic scattering. Phys. Rev. Lett. 111, 030403 (2013).  https://doi.org/10.1103/PhysRevLett.111.030403 ADSCrossRefGoogle Scholar
  93. 93.
    Nock, A., Kumar, S., Sommers, H.-J., Guhr, T.: Distributions of off-diagonal scattering matrix elements: exact results. Ann. Phys. 342, 103 (2014).  https://doi.org/10.1016/j.aop.2013.11.006 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142 (1997).  https://doi.org/10.1016/S0550-3213(96)00542-1 ADSCrossRefGoogle Scholar
  95. 95.
    Zirnbauer, M.R.: Riemannian symmetric superspaces and their origin in random matrix theory. J. Phys. Math. 37, 4986 (1996).  https://doi.org/10.1063/1.531675 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shiv Nadar UniversityGautam Buddha NagarIndia

Personalised recommendations