Advertisement

Theoretical Model of Transcription Based on Torsional Mechanics of DNA Template

  • Xining Xu
  • Yunxin ZhangEmail author
Article
  • 11 Downloads

Abstract

Transcription is the first step of gene expression, in which a particular segment of DNA is copied to RNA by the enzyme RNA polymerase (RNAP). Despite many details of the complex interactions between DNA and RNA synthesis disclosed experimentally, much of physical behavior of transcription remains largely unknown. Understanding torsional mechanics of DNA and RNAP together with its nascent RNA and RNA-bound proteins in transcription maybe the first step towards deciphering the mechanism of gene expression. In this study, based on the balance between viscous drag on RNA synthesis and torque resulted from untranscribed supercoiled DNA template, a simple model is presented to describe mechanical properties of transcription. With this model, the rotation and supercoiling density of the untranscribed DNA template are discussed in detail. Two particular cases of transcription are considered, transcription with constant velocity and transcription with torque dependent velocity. Our results show that, during the initial stage of transcription, rotation originated from the transcribed part of DNA template is mainly released by the rotation of RNAP synthesis. During the intermediate stage, the rotation is usually released by both the supercoiling of the untranscribed part of DNA template and the rotation of RNAP synthesis, with proportion depending on the friction coefficient in environment and the length of nascent RNA. However, with the approaching to the upper limit of twisting of the untranscribed DNA template, the rotation resulted from transcription will then be mainly released by the rotation of RNAP synthesis.

Keywords

Transcription Torsional mechanics Torque dependent velocity 

Notes

Supplementary material

10955_2019_2236_MOESM1_ESM.pdf (271 kb)
Supplementary material 1 (pdf 270 KB)

References

  1. 1.
    Cooper, G.M.: The Cell: A Molecular Approach, 2nd edn. Sinauer Associates, Inc., Sunderland (2000)Google Scholar
  2. 2.
    Dehaseth, P.L., Zupancic, M.L., Record Jr., M.T.: RNA polymerase–promoter interactions: the comings and goings of RNA polymerase. J. Bacteriol. 180, 3019–3025 (1998)Google Scholar
  3. 3.
    Cheetham, G.M.T., Jeruzalmi, D., Steitz, T.A.: Structural basis for initiation of transcription from an RNA polymerase promoter complex. Nature 399, 80–83 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Watson, J.D., Baker, T.A., Bell, S.P., Gann, A.A., Levine, M., Losick, R.M.: Molecular Biology of the Gene, 7th edn. Pearson, London (2013)Google Scholar
  5. 5.
    Wilkins, M.H., Stokes, A.R., Wilson, H.R.: Molecular structure of deoxypentose nucleic acids. Nature 171(4356), 738–740 (1953)ADSCrossRefGoogle Scholar
  6. 6.
    Liu, L.F., Wang, J.C.: Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. 84(20), 7024–7027 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    Giaever, G.N., Wang, J.C.: Supercoiling of intracellular DNA can occur in eukaryotic cells. Cell 55(5), 849–856 (1988)CrossRefGoogle Scholar
  8. 8.
    Tsao, Y.P., Wu, H.Y., Liu, L.F.: Transcription-driven supercoiling of DNA: direct biochemical evidence from in vitro studies. Cell 56(1), 111–118 (1989)CrossRefGoogle Scholar
  9. 9.
    Krasilnikov, A.S., Podtelezhnikov, A., Vologodskii, A., Mirkin, S.M.: Large-scale effects of transcriptional DNA supercoiling in vivo. J. Mol. Biol. 292(5), 1149–1160 (1999)CrossRefGoogle Scholar
  10. 10.
    Harada, Y., Ohara, O., Takatsuki, A., Itoh, H., Shimamoto, N., Kinosita Jr., K.: Direct observation of DNA rotation during transcription by \(Escherichia coli\) RNA polymerase. Nature 409(6816), 113–115 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Kouzine, F., Liu, J., Sanford, S., Chung, H.J., Levens, D.: The dynamic response of upstream DNA to transcription-generated torsional stress. Nat. Struct. Mol. Biol. 11(11), 1092–1100 (2004)CrossRefGoogle Scholar
  12. 12.
    Forth, S., Sheinin, M.Y., Inman, J., Wang, M.D.: Torque measurement at the single-molecule level. Ann. Rev. Biophys. 42(42), 583–604 (2013)CrossRefGoogle Scholar
  13. 13.
    Ma, J., Wang, M.D.: DNA supercoiling during transcription. Biophys. Rev. 8(1), 75–87 (2016)CrossRefGoogle Scholar
  14. 14.
    Rybenkov, V.V., Vologodskii, A.V., Cozzarelli, N.R.: The effect of ionic conditions on DNA helical repeat, effective diameter and free energy of supercoiling. Nucl. Acids Res. 25(7), 1412–1418 (1997)CrossRefGoogle Scholar
  15. 15.
    Moroz, J.D., Nelson, P.: Torsional directed walks, entropic elasticity, and DNA twist stiffness. Proc. Natl. Acad. Sci. 94(26), 14418–14422 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    Marko, F.J.: Torque and dynamics of linking number relaxation in stretched supercoiled DNA. Phys. Rev. E 76(2), 021926 (2007)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Lavelle, C.: Pack, unpack, bend, twist, pull, push: the physical side of gene expression. Curr. Opin. Genet. Dev. 25, 74–84 (2014)CrossRefGoogle Scholar
  18. 18.
    Sevier, S.A., Levine, H.: Mechanical properties of transcription. Phys. Rev. Lett. 118(26), 268101 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001)Google Scholar
  20. 20.
    Chong, S., Chen, C., Ge, H., Xie, X.S.: Mechanism of transcriptional bursting in bacteria. Cell 158(2), 314–326 (2014)CrossRefGoogle Scholar
  21. 21.
    Müller, M.J.I., Klumpp, S., Lipowsky, R.: Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc. Natl. Acad. Sci. 105, 4609–4614 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Kunwar, A., Mogilner, A.: Robust transport by multiple motors with nonlinear force–velocity relations and stochastic load sharing. Phys. Biol. 7(1), 16012 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Jie, J., Bai, L., Wang, M.D.: Transcription under torsion. Science 340(6140), 1580–1583 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Nicolas, D., Phillips, N.E., Naef, F.: What shapes eukaryotic transcriptional bursting? Mol. Biosyst. 13(2), 1280–1290 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Mathematics for Nonlinear Science, Shanghai Key Laboratory for Contemporary Applied Mathematics, Centre for Computational Systems Biology, School of Mathematical SciencesFudan UniversityShanghaiChina

Personalised recommendations