Nonrelativistic Hydrodynamics from Quantum Field Theory: (I) Normal Fluid Composed of Spinless Schrödinger Fields
- 18 Downloads
Abstract
We provide a complete derivation of hydrodynamic equations for nonrelativistic systems based on quantum field theories of spinless Schrödeinger fields, assuming that an initial density operator takes a special form of the local Gibbs distribution. The constructed optimized/renormalized perturbation theory for real-time evolution enables us to separately evaluate dissipative and nondissipative parts of constitutive relations. It is shown that the path-integral formula for local thermal equilibrium together with the symmetry properties of the resulting action—the nonrelativistic diffeomorphism and gauge symmetry in the thermally emergent Newton–Cartan geometry—provides a systematic way to derive the nondissipative part of constitutive relations. We further show that dissipative parts are accompanied with the entropy production operator together with two kinds of fluctuation theorems by the use of which we derive the dissipative part of constitutive relations and the second law of thermodynamics. After obtaining the exact expression for constitutive relations, we perform the derivative expansion and derive the first-order hydrodynamic (Navier–Stokes) equation with the Green–Kubo formula for transport coefficients.
Keywords
Nonrelativistic hydrodynamics Renormalized/optimized perturbation theory Fluctuation theorem Nonrelativistic curved geometry Path integralNotes
Acknowledgements
The author thanks K. Fujii, Y. Hidaka, K. Jensen, Y. Kikuchi, M. Roberts, K. Saito, S-i. Sasa, H. Taya, K. Tomoda, and T. Tsuboi for useful discussions and comments. M.H. was supported by the Special Postdoctoral Researchers Program at RIKEN. This work was partially supported by the RIKEN iTHES/iTHEMS Project and iTHEMS STAMP working group.
References
- 1.Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Butterworth Heinemann, Oxford (1987)Google Scholar
- 2.Nakajima, S.: Thermal irreversible processes (in Japanese). Busseironkenkyu 2(2), 197–208 (1957). https://doi.org/10.11177/busseiron1957.2.197 Google Scholar
- 3.Mori, H.: Statistical-mechanical theory of transport in fluids. Phys. Rev. 112, 1829–1842 (1958). https://doi.org/10.1103/PhysRev.112.1829 ADSMathSciNetzbMATHGoogle Scholar
- 4.McLennan, J.A.: Statistical mechanics of transport in fluids. Phys. Fluids 3(4), 493–502 (1960)ADSMathSciNetzbMATHGoogle Scholar
- 5.McLennan, J.A.: Introduction to Non equilibrium Statistical Mechanics. Prentice Hall Advanced Reference Series. Prentice Hall, Upper Saddle River (1988)Google Scholar
- 6.Zubarev, D.N., Prozorkevich, A.V., Smolyanskii, S.A.: Derivation of nonlinear generalized equations of quantum relativistic hydrodynamics. Theor. Math. Phys. 40(3), 821–831 (1979). https://doi.org/10.1007/BF01032069 MathSciNetzbMATHGoogle Scholar
- 7.Zubarev, D.N., Morozov, V., Ropke, G.: Statistical Mechanics of Nonequilibrium Processes, Volume 1: Basic Concepts, Kinetic Theory, 1st edn. Wiley-VCH, Weinheim (1996)zbMATHGoogle Scholar
- 8.Zubarev, D.N., Morozov, V., Ropke, G.: Statistical Mechanics of Nonequilibrium Processes, Volume 2: Relaxation and Hydrodynamic Processes. Wiley-VCH, Weinheim (1997)zbMATHGoogle Scholar
- 9.Kawasaki, K., Gunton, J.D.: Theory of nonlinear transport processes: nonlinear shear viscosity and normal stress effects. Phys. Rev. A 8, 2048–2064 (1973). https://doi.org/10.1103/PhysRevA.8.2048 ADSGoogle Scholar
- 10.Banerjee, N., Bhattacharya, J., Bhattacharyya, S., Jain, S., Minwalla, S.: Constraints on fluid dynamics from equilibrium partition functions. J. High Energy Phys. 1209, 46 (2012). https://doi.org/10.1007/JHEP09(2012)046 ADSMathSciNetzbMATHGoogle Scholar
- 11.Jensen, K., Kaminski, M., Kovtun, P., Meyer, R., Ritz, A., Yarom, A.: Towards hydrodynamics without an entropy current. Phys. Rev. Lett. 109, 101601 (2012). https://doi.org/10.1103/PhysRevLett.109.101601 ADSGoogle Scholar
- 12.Grozdanov, S., Polonyi, J.: Viscosity and dissipative hydrodynamics from effective field theory. Phys. Rev. D 91(10), 105031 (2015). https://doi.org/10.1103/PhysRevD.91.105031 ADSMathSciNetGoogle Scholar
- 13.Haehl, F.M., Loganayagam, R., Rangamani, M.: Adiabatic hydrodynamics: the eightfold way to dissipation. J. High Energy Phys. 05, 60 (2015). https://doi.org/10.1007/JHEP05(2015)060 ADSMathSciNetzbMATHGoogle Scholar
- 14.Crossley, M., Glorioso, P., Liu, H.: Effective field theory of dissipative fluids. J. High Energy Phys. 09, 95 (2017). https://doi.org/10.1007/JHEP09(2017)095 ADSMathSciNetzbMATHGoogle Scholar
- 15.Haehl, F.M., Loganayagam, R., Rangamani, M.: Topological sigma models & dissipative hydrodynamics. J. High Energy Phys. 04, 39 (2016). https://doi.org/10.1007/JHEP04(2016)039 ADSMathSciNetzbMATHGoogle Scholar
- 16.Haehl, F.M., Loganayagam, R., Rangamani, M.: Schwinger–Keldysh formalism. Part I: BRST symmetries and superspace. J. High Energy Phys. 06, 069 (2017). https://doi.org/10.1007/JHEP06(2017)069 ADSMathSciNetzbMATHGoogle Scholar
- 17.Haehl, F.M., Loganayagam, R., Rangamani, M.: Schwinger–Keldysh formalism. Part II: thermal equivariant cohomology. J. High Energy Phys. 06, 070 (2017). https://doi.org/10.1007/JHEP06(2017)070 ADSMathSciNetzbMATHGoogle Scholar
- 18.Jensen, K., Pinzani-Fokeev, N., Yarom, A.: Dissipative hydrodynamics in superspace. J. High Energy Phys. 2018, 127 (2017)MathSciNetzbMATHGoogle Scholar
- 19.Glorioso, P., Crossley, M., Liu, H.: Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current. J. High Energy Phys. 09, 096 (2017). https://doi.org/10.1007/JHEP09(2017)096 ADSMathSciNetzbMATHGoogle Scholar
- 20.Haehl, F.M., Loganayagam, R., Rangamani, M.: Two roads to hydrodynamic effective actions: a comparison (2017)Google Scholar
- 21.Sasa, S.: Derivation of hydrodynamics from the Hamiltonian description of particle systems. Phys. Rev. Lett. 112(10), 100602 (2014). https://doi.org/10.1103/PhysRevLett.112.100602 ADSGoogle Scholar
- 22.Yamada, T., Kawasaki, K.: Nonlinear effects in the shear viscosity of critical mixtures. Prog. Theor. Phys. 38(5), 1031–1051 (1967). https://doi.org/10.1143/PTP.38.1031 ADSGoogle Scholar
- 23.Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997). https://doi.org/10.1103/PhysRevLett.78.2690 ADSGoogle Scholar
- 24.Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 (1993). https://doi.org/10.1103/PhysRevLett.71.2401 ADSzbMATHGoogle Scholar
- 25.Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995). https://doi.org/10.1103/PhysRevLett.74.2694 ADSGoogle Scholar
- 26.Kurchan, J.: Fluctuation theorem for stochastic dynamics. J. Phys. A 31(16), 3719 (1998). http://stacks.iop.org/0305-4470/31/i=16/a=003
- 27.Maes, C.: The fluctuation theorem as a gibbs property. J. Stat. Phys. 95(1), 367–392 (1999). https://doi.org/10.1023/A:1004541830999 ADSMathSciNetzbMATHGoogle Scholar
- 28.Lebowitz, J.L., Spohn, H.: A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95(1), 333–365 (1999). https://doi.org/10.1023/A:1004589714161 ADSMathSciNetzbMATHGoogle Scholar
- 29.Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366 (2000). https://doi.org/10.1103/PhysRevE.61.2361 ADSGoogle Scholar
- 30.Jarzynski, C.: Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98(1), 77–102 (2000). https://doi.org/10.1023/A:1018670721277 MathSciNetzbMATHGoogle Scholar
- 31.Seifert, U.: Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040,602 (2005). https://doi.org/10.1103/PhysRevLett.95.040602 Google Scholar
- 32.Hayata, T., Hidaka, Y., Noumi, T., Hongo, M.: Relativistic hydrodynamics from quantum field theory on the basis of the generalized Gibbs ensemble method. Phys. Rev. D 92(6), 065,008 (2015). https://doi.org/10.1103/PhysRevD.92.065008 Google Scholar
- 33.Hongo, M.: Path-integral formula for local thermal equilibrium. Ann. Phys. 383, 1–32 (2017). https://doi.org/10.1016/j.aop.2017.04.004 ADSMathSciNetzbMATHGoogle Scholar
- 34.Gromov, A., Abanov, A.G.: Thermal Hall effect and geometry with torsion. Phys. Rev. Lett. 114(1), 016,802 (2015). https://doi.org/10.1103/PhysRevLett.114.016802 Google Scholar
- 35.Jensen, K.: On the coupling of Galilean-invariant field theories to curved spacetime (2014)Google Scholar
- 36.Jensen, K.: Aspects of hot Galilean field theory. J. High Energy Phys. 04, 123 (2015). https://doi.org/10.1007/JHEP04(2015)123 ADSMathSciNetzbMATHGoogle Scholar
- 37.Banerjee, N., Dutta, S., Jain, A.: Equilibrium partition function for nonrelativistic fluids. Phys. Rev. D 92, 081,701 (2015). https://doi.org/10.1103/PhysRevD.92.081701 Google Scholar
- 38.Banerjee, N., Dutta, S., Jain, A.: Null fluids: a new viewpoint of Galilean fluids. Phys. Rev. D 93(10), 105,020 (2016). https://doi.org/10.1103/PhysRevD.93.105020 MathSciNetGoogle Scholar
- 39.de Boer, J., Hartong, J., Obers, N.A., Sybesma, W., Vandoren, S.: Perfect fluids. SciPost Phys. 5(1), 003 (2018). https://doi.org/10.21468/SciPostPhys.5.1.003
- 40.Jensen, K., Karch, A.: Revisiting non-relativistic limits. J. High Energy Phys. 04, 155 (2015). https://doi.org/10.1007/JHEP04(2015)155 ADSMathSciNetzbMATHGoogle Scholar
- 41.Son, D.T.: Newton–Cartan geometry and the quantum hall effect (2013)Google Scholar
- 42.Banerjee, R., Mitra, A., Mukherjee, P.: A new formulation of non-relativistic diffeomorphism invariance. Phys. Lett. B 737, 369–373 (2014). https://doi.org/10.1016/j.physletb.2014.09.004 ADSzbMATHGoogle Scholar
- 43.Geracie, M., Son, D.T., Wu, C., Wu, S.F.: Spacetime symmetries of the quantum Hall effect. Phys. Rev. D 91, 045,030 (2015). https://doi.org/10.1103/PhysRevD.91.045030 MathSciNetGoogle Scholar
- 44.Banerjee, R., Mitra, A., Mukherjee, P.: Localization of the Galilean symmetry and dynamical realization of Newton–Cartan geometry. Class. Quant. Gravity 32(4), 045,010 (2015). https://doi.org/10.1088/0264-9381/32/4/045010 MathSciNetzbMATHGoogle Scholar
- 45.Brauner, T., Endlich, S., Monin, A., Penco, R.: General coordinate invariance in quantum many-body systems. Phys. Rev. D 90(10), 105,016 (2014). https://doi.org/10.1103/PhysRevD.90.105016 Google Scholar
- 46.Hartong, J., Kiritsis, E., Obers, N.A.: Schrödinger invariance from Lifshitz isometries in holography and field theory. Phys. Rev. D 92, 066,003 (2015). https://doi.org/10.1103/PhysRevD.92.066003 Google Scholar
- 47.Bergshoeff, E.A., Hartong, J., Rosseel, J.: Torsional Newton-Cartan geometry and the Schrödinger algebra. Class. Quant. Gravity 32(13), 135,017 (2015). https://doi.org/10.1088/0264-9381/32/13/135017 zbMATHGoogle Scholar
- 48.Geracie, M., Prabhu, K., Roberts, M.M.: Curved non-relativistic spacetimes, Newtonian gravitation and massive matter. J. Math. Phys. 56(10), 103,505 (2015). https://doi.org/10.1063/1.4932967 MathSciNetzbMATHGoogle Scholar
- 49.Geracie, M., Prabhu, K., Roberts, M.M.: Fields and fluids on curved non-relativistic spacetimes. J. High Energy Phys. 08, 042 (2015). https://doi.org/10.1007/JHEP08(2015)042 ADSMathSciNetzbMATHGoogle Scholar
- 50.de Boer, J., Hartong, J., Obers, N.A., Sybesma, W., Vandoren, S.: Hydrodynamic modes of homogeneous and isotropic fluids. SciPost Phys. 5(2), 014 (2018). https://doi.org/10.21468/SciPostPhys.5.2.014
- 51.Hongo, M., Fujii, K.: Nonrelativistic hydrodynamics from quantum field theory: (II) Spinful fluid and Hall transport under magnetic field (in preparation)Google Scholar
- 52.Matsubara, T.: A new approach to quantum-statistical mechanics. Prog. Theor. Phys. 14(4), 351–378 (1955). https://doi.org/10.1143/PTP.14.351 ADSMathSciNetzbMATHGoogle Scholar
- 53.Abrikosov, A.A., Gorkov, L.P., Dzyaloshinskii, I.E.: On the application of quantum-field-theory methods to problems of quantum statistics at finite temperatures. Sov. Phys. JETP 9(3), 636–641 (1959)Google Scholar
- 54.Kleinert, H.: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets. EBL-Schweitzer. World Scientific (2009). https://books.google.co.jp/books?id=VJ1qNz5xYzkC
- 55.Jakovác, A., Patkós, A.: Resummation and Renormalization in Effective Theories of Particle Physics. Lecture Notes in Physics. Springer International Publishing (2015). https://books.google.co.jp/books?id=57vfCgAAQBAJ
- 56.Green, M.S.: Markoff random processes and the statistical mechanics of timedependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22(3), 398–413 (1954). https://doi.org/10.1063/1.1740082 ADSMathSciNetGoogle Scholar
- 57.Nakano, H.: A method of calculation of electrical conductivity. Prog. Theor. Phys. 15(1), 77–79 (1956). https://doi.org/10.1143/PTP.15.77. http://ptp.oxfordjournals.org/content/15/1/77.short
- 58.Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12(6), 570–586 (1957). https://doi.org/10.1143/JPSJ.12.570 ADSMathSciNetGoogle Scholar
- 59.Stevenson, P.M.: Optimized perturbation theory. Phys. Rev. D 23, 2916 (1981). https://doi.org/10.1103/PhysRevD.23.2916 ADSGoogle Scholar
- 60.Ernst, M.H., Hauge, E.H., van Leeuwen, J.M.J.: Asymptotic time behavior of correlation functions. Phys. Rev. Lett. 25, 1254–1256 (1970). https://doi.org/10.1103/PhysRevLett.25.1254 ADSGoogle Scholar
- 61.Dorfman, J.R., Cohen, E.G.D.: Velocity correlation functions in two and three dimensions. Phys. Rev. Lett. 25, 1257–1260 (1970). https://doi.org/10.1103/PhysRevLett.25.1257 ADSGoogle Scholar
- 62.Pomeau, Y., Résibois, P.: Time dependent correlation functions and mode-mode coupling theories. Phys. Rep. 19(2), 63–139 (1975). https://doi.org/10.1016/0370-1573(75)90019-8 ADSGoogle Scholar
- 63.Hoyos, C., Son, D.T.: Hall viscosity and electromagnetic response. Phys. Rev. Lett. 108, 066,805 (2012). https://doi.org/10.1103/PhysRevLett.108.066805 Google Scholar
- 64.Fujii, K., Nishida, Y.: Low-energy effective field theory of superfluid \(^3\)He-B and its gyromagnetic and Hall responses. Ann. Phys. 395, 170–182 (2018). https://doi.org/10.1016/j.aop.2018.06.003
- 65.Becattini, F., Bucciantini, L., Grossi, E., Tinti, L.: Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid. Eur. Phys. J. C 75(5), 191 (2015). https://doi.org/10.1140/epjc/s10052-015-3384-y ADSGoogle Scholar
- 66.Khalatnikov, I.: An Introduction to the Theory of Superfluidity. Advanced Books Classics Series. Addison-Wesley Publishing Company (1989). https://books.google.co.jp/books?id=aIrvAAAAMAAJ
- 67.Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978). https://doi.org/10.1103/RevModPhys.50.221 ADSMathSciNetzbMATHGoogle Scholar
- 68.Esposito, R., Marra, R.: On the derivation of the incompressible mavier-stokes equation for hamiltonian particle systems. J. Stat. Phys. 74(5), 981–1004 (1994). https://doi.org/10.1007/BF02188213 ADSzbMATHGoogle Scholar
- 69.Mori, H.: Transport, collective motion, and brownian motion. Prog. Theor. Phys. 33(3), 423–455 (1965). https://doi.org/10.1143/PTP.33.423 ADSzbMATHGoogle Scholar
- 70.Nambu, Y., Jona-Lasinio, G.: Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122, 345–358 (1961). https://doi.org/10.1103/PhysRev.122.345 ADSGoogle Scholar
- 71.Goldstone, J.: Field theories with superconductor solutions. Nuovo Cimento 19, 154–164 (1961). https://doi.org/10.1007/BF02812722 MathSciNetzbMATHGoogle Scholar
- 72.Goldstone, J., Salam, A., Weinberg, S.: Broken symmetries. Phys. Rev. 127, 965–970 (1962). https://doi.org/10.1103/PhysRev.127.965 ADSMathSciNetzbMATHGoogle Scholar
- 73.Martin, P.C., Parodi, O., Pershan, P.S.: Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys. Rev. A 6, 2401–2420 (1972). https://doi.org/10.1103/PhysRevA.6.2401 ADSGoogle Scholar