Memory Effects in the Fermi–Pasta–Ulam Model
- 83 Downloads
Abstract
We study the intermediate scattering function (ISF) of the strongly-nonlinear Fermi–Pasta–Ulam Model at thermal equilibrium, using both numerical and analytical methods. From the molecular dynamics simulations we distinguish two limit regimes, as the system behaves as an ideal gas at high temperature and as a harmonic chain for low excitations. At intermediate temperatures the ISF relaxes to equilibrium in a nontrivial fashion. We then calculate analytically the Taylor coefficients of the ISF to arbitrarily high orders (the specific, simple shape of the two-body interaction allows us to derive an iterative scheme for these). The results of the recursion are in good agreement with the numerical ones. Via an estimate of the complete series expansion of the scattering function, we can reconstruct within a certain temperature range its coarse-grained dynamics. This is governed by a memory-dependent Generalized Langevin Equation (GLE), which can be derived via projection operator techniques. Moreover, by analyzing the first series coefficients of the ISF, we can extract a parameter associated to the strength of the memory effects in the dynamics.
Keywords
FPU model FPU system Fermi–Pasta–Ulam model Fermi–Pasta–Ulam system Coarse-graining Generalized Langevin equation Intermediate scattering function Memory kernel Harmonic chainNotes
Acknowledgements
We thank T. Voigtmann, T. Franosch and A. Zippelius for useful discussions. Computer simulations presented in this paper were carried out using the bwForCluster NEMO high-performance computing facility.
References
- 1.Peyrard, M., Farago, J.: Nonlinear localization in thermalized lattices: application to DNA. Phys. A 288(1), 199–217 (2000)CrossRefGoogle Scholar
- 2.Henry, A., Chen, G.: Anomalous heat conduction in polyethylene chains: theory and molecular dynamics simulations. Phys. Rev. B 79, 144305 (2009)ADSCrossRefGoogle Scholar
- 3.Spohn, H.: Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals. Phys. A 369(1), 71–99 (2006)MathSciNetCrossRefGoogle Scholar
- 4.Gallavotti, G.: The Fermi–Pasta–Ulam Problem: A Status Report. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
- 5.Bambusi, D., Carati, A., Maiocchi, A., Maspero, A.: Some Analytic Results on the FPU Paradox, pp. 235–254. Springer, New York, NY (2015)zbMATHGoogle Scholar
- 6.Fermi, E., Pasta, J., Ulam, S.: Studies of nonlinear problems I, Los Alamos Report LA 1940, 1955 (1974)Google Scholar
- 7.Dauxois, T.: Fermi, Pasta, Ulam, and a mysterious lady. Phys. Today 61(1), 55–57 (2008)ADSCrossRefGoogle Scholar
- 8.Fermi, E.: Beweiss das ein mechanisches normal system im allgemeinen quasi-ergodisch ist. Phys. Z. 24, 261 (1923)zbMATHGoogle Scholar
- 9.Rink, B.: Proof of Nishida’s conjecture on anharmonic lattices. Commun. Math. Phys. 261(3), 613–627 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 10.Friesecke, G., Mikikits-Leitner, A.: Cnoidal waves on Fermi-Pasta-Ulam lattices. J. Dyn. Differ. Equ. 27, 627–652 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Hajnal, D., Schilling, R.: Delocalization-localization transition due to anharmonicity. Phys. Rev. Lett. 101, 124101 (2008)ADSCrossRefGoogle Scholar
- 12.Carati, A., Galgani, L.: Metastability in specific-heat measurements: simulations with the FPU model. EPL 75(4), 528 (2006)ADSCrossRefGoogle Scholar
- 13.Maiocchi, A., Bambusi, D., Carati, A.: An Averaging Theorem for FPU in the Thermodynamic Limit. J. Stat. Phys. 155, 300–322 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 14.Maiocchi, A.M., Carati, A., Giorgilli, A.: A series expansion for the time autocorrelation of dynamical variables. J. Stat. Phys. 148, 1054–1071 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 15.Carati, A., Maiocchi, A., Galgani, L., Amati, G.: The Fermi–Pasta–Ulam system as a model for glasses. Math. Phys. Anal. Geom. 18, 31 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Mori, H.: Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33(3), 423–455 (1965)ADSCrossRefzbMATHGoogle Scholar
- 17.Zwanzig, R.: Memory effects in irreversible thermodynamics. Phys. Rev. 124, 983–992 (1961)ADSCrossRefzbMATHGoogle Scholar
- 18.Grabert, H.: Projection Operator Techniques in Nonequilibrium Statistical Mechanics. Springer, Berlin (1982)CrossRefGoogle Scholar
- 19.Wierling, A.: Dynamic structure factor of linear harmonic chain—a recurrence relation approach. Eur. Phys. J. B 85, 20 (2012)ADSCrossRefGoogle Scholar
- 20.Meyer, H., Voigtmann, T., Schilling, T.: On the non-stationary generalized Langevin equation. J. Chem. Phys. 147, 214110 (2017)ADSCrossRefGoogle Scholar
- 21.Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, New York, NY (1989)zbMATHGoogle Scholar
- 22.Reichman, D.R., Charbonneau, P.: Mode-coupling theory. J. Stat. Mech. 2005(05), P05013 (2005)CrossRefGoogle Scholar
- 23.Hansen, J.-P., McDonald, I.R. (eds.): Theory of Simple Liquids, 4th edn. Academic Press, Oxford (2013)Google Scholar
- 24.Jean-Philippe, B.: Anomalous Relaxation in Complex Systems: From Stretched to Compressed Exponentials, pp. 327–345. Wiley-Blackwell, Hoboken (2008)Google Scholar
- 25.Yoshida, T., Shobu, K., Mori, H.: Dynamic properties of one-dimensional harmonic liquids. idensity correlation and transport coefficients. Prog. Theor. Phys. 66(3), 759–771 (1981)ADSCrossRefGoogle Scholar
- 26.Shobu, K., Yoshida, T., Mori, H.: Dynamic properties of one-dimensional harmonic liquids. ii—Energy density correlation and heat transport. Prog. Theor. Phys. 66(4), 1160–1168 (1981)ADSCrossRefGoogle Scholar
- 27.Radons, G., Keller, J., Geisel, T.: Dynamical structure factor of a one-dimensional harmonic liquid: comparison of different approximation methods. Zeitschrift für Physik B Condensed Matter 50, 289–296 (1983)ADSCrossRefGoogle Scholar